Supporting Information

Efficient phase-selective gelator for aromatic solvents recovery based on cyanostilbene amide derivative

Yuping Zhang, Yao Ma, Mengyu Deng, Hongxing Shang, Chunshuang Liang and Shimei Jiang*

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun 130012, P. R. China

Corresponding Author: E-mail: smjiang@jlu.edu.cn. Tel: +86-431-85168474. Fax: +86-431-85193421.
Scheme S1 Synthesis route of cyanostilbene amide derivatives 1 and 2.

Fig. S1 Photographs of the gels of 2 in different solvents under daylight. From left to right: toluene, p-xylene, xylene, mesitylene, p-chlorotoluene, bromobenzene, chlorobenzene, 1,2-dichlorobenzene, chloroform.

Fig. S2 SEM images of 2 xerogels formed from (a) toluene, (b) xylene, (c) p-chlorotoluene, (d) chlorobenzene, (e) bromobenzene and (f) 1,2-dichlorobenzene.
Fig. S3 Phase-selective gelation of 2 from different the ratio of toluene and water, (a) 0.4 mL : 2 mL, (b) 0.4 mL : 4 mL, (c) the toluene gel of 2.

Fig. S4 SEM images of 2 xerogel formed from p-xylene via a room-temperature phase-selective gelation process.

Fig. S5 Phase-selective gelation of 2 for a little aromatic solvents at room temperature, (a) 0.2 mL xylene and 4 mL water mixture, (b) the inclined tube after selective gelation after upon addition of 2, (c) the xylene gel of 2 scooped out with a spatula.
Fig. S6 1H NMR (500 MHz) spectrum of compound 1 in CDCl$_3$.

Fig. S7 13C NMR (125 MHz) spectrum of compound 1 in CDCl$_3$.
Fig. S8 1H NMR (500 MHz) spectrum of compound 2 in CDCl$_3$.

Fig. S9 13C NMR (125 MHz) spectrum of compound 2 in CDCl$_3$.
Fig. S10 1H NMR (500 MHz) spectrum of compound 5 in CDCl$_3$.

Fig. S11 1H NMR (500 MHz) spectrum of compound 6 in CDCl$_3$.