Supporting Information for:

Creation of liquid-crystal periodic zigzags by surface treatment and thermal annealing

Seong Ho Ryu, Min-Jun Gim, Yun Jeong Cha, Tae Joo Shin, Hyungju Ahn, Dong Ki Yoon

aGraduate School of Nanoscience and Technology and KINC, KAIST, Daejeon, 305-701, Republic of Korea

bUNIST Central Research Facilities & School of Natural Science, UNIST, Ulsan, 689-789, Republic of Korea

Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, Republic of Korea

*Corresponding author Email: nandk@kaist.ac.kr
Fig. S1 DRLM images of the zigzag structures as increasing sample thickness. The scale bar is 20 μm.
Figure S2

Fig. S2 DRLM images of the zigzag structure as rotating crossed polarizers at (a) 0°, (b) 20°, and (c) 45°.

The scale bar is 10 μm.
Figure S3

The fluorescent intensities in LSFCM images at (a and b) $z = 0\ \mu m$ and (c and d) $z = 8\ \mu m$. The scale bar is 10 μm.

Fig. S3 The fluorescent intensities in LSFCM images at (a and b) $z = 0\ \mu m$ and (c and d) $z = 8\ \mu m$. The scale bar is 10 μm.
Figure S4

Fig. S4 The AFM phase image of the zigzag structure. The blue box is the same area shown in the Figure 4(a). The scale bar is 10 μm.
Fig. S5 Structural transition behaviour of the zigzag disclination lines upon cooling from N-SmA transition to SmA phase. The scale bare is 50 μm.
Fig. S6 A AFM study of the rubbed PI-coated Si substrate. (a) The AFM topographic image of the rubbed PI-coated Si substrate and (b) its height profile. The scale bar is 2 μm.