Ion exchange in alginate gels – dynamic behaviour revealed by electron paramagnetic resonance
G. Ionita, A. M. Ariciu, D. K. Smith and V. Chechik

Supplementary information.

Fig. S1: EPR spectra of 4NH$_2$T-ALG-L solutions. 2
Fig. S2: EPR spectra of 4NH$_2$T-ALG-L solutions. 2
Fig. S3: The effect of alginate concentration on EPR spectra of 4NH$_2$T-ALG-L 3
Fig. S4: The effect of alginate concentration on EPR spectra of 4NH$_2$T-ALG-VL 3
Fig. S5: The EPR spectra of 4NH$_2$T-ALG-L in different solutions 4
Fig. S6: EPR spectrum of the gel phase after diffusion of VO$^{2+}$ into Zn$^{2+}$-alginate gel 5
Fig. S7: EPR spectra of solution after mixing labelled gel with unlabelled alginate 6
Fig. S1: EPR spectra of 4NH$_2$T-ALG-L solutions. Line broadening was observed at 1% concentration. This was reduced when the concentration used was 0.1 %

Fig. S2: EPR spectra of 4NH$_2$T-ALG-L solutions. Line broadening was observed at 1% concentration. This was reduced when the concentration used was 0.1 %
Fig. S3: The effect of alginate concentration on EPR spectra of 4NH₂T-ALG-L

Fig. S4: The effect of alginate concentration on EPR spectra of 4NH₂T-ALG-VL
Fig. S5: The EPR spectra of 4NH₂T-ALG-L in: (a) 1% alginic acid, (b) in EDTA 2M, (c) alginic acid 1% in 4M NaCl
Fig. S6: EPR spectrum of the gel phase after diffusion of VO$^{2+}$ into Zn$^{2+}$-alginate gel shows evidence of some immobilised VO$^{2+}$.
Fig. S7: EPR spectrum of the solution phase after a spin-labelled Ca\(^{2+}\)-alginate gel (blue) was mixed with a 2% solution of unlabelled alginate.