Electronic Supplementary Information

Soft Matter manuscript

‘Aqueous Foams Stabilized by Temperature-Sensitive Hairy Polymer Particles’

by S. Nakayama _et al._

Corresponding author:

Dr. Syuji Fujii; syuji.fujii@oit.ac.jp

PDEA chain occupied molecular area at the particle surface

For the calculation of PDEA chain occupied molecular area at the particle surface, the values shown below were used: a diameter of PDEA-PS particles, 410 nm; PDEA loading on the PDEA-PS particles, 2.78 wt%; a molecular weight of PDEA hair (n=60), 11100; a density of PS, 1.06 g/cm3. Weight and surface area of single PDEA-PS particle are calculated to be 3.83×10^{-14} g and 5.28×10^{-13} m2, respectively. Weight and number of PDEA hairs in the PDEA-PS particle are calculated to be 1.06×10^{-15} g and 57651. These values lead to PDEA chain occupied molecular area at the particle surface and square root of the occupied molecular area of 9.16 nm2 and 3.03 nm, respectively.

Calculation for diameter of gyration of the PDEA hair

The diameter of gyration of the PDEA hair was calculated using the equation shown below,

$$D = 2 \sqrt[6]{\frac{na^2}{6}}$$

where n and a are bond number and bond length, respectively.
Figure S1. OM image of PDEA-PS particles dispersed in aqueous buffer (pH 4.01) at 25 °C.
Figure S2. OM images of foams stabilized with PDEA-PS particles (10 wt%, pH 6.86) prepared at temperatures of 50 °C and 55 °C. Flocs can be observed in aqueous media and on the bubble surfaces.