Supporting Information

Superior Performance Asymmetric Supercapacitors Based on ZnCo$_2$O$_4$@MnO$_2$ Core-shell Electrode

Wenqin Ma, Honghong Nan, Zhengxiang Gu, Baoyou Geng, Xiaojun Zhang*

Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Normal University, Wuhu, 241000, P R China.

Experimental Section:

Synthesis of 3D porous spinous α-Fe$_2$O$_3$ on soft thin Fe substrate

In a typical procedure, a Fe foil (1 cm × 1 cm) was cleaned from a consecutive ultrasonication in acetone, ethanol, distilled water. 5 mL Oleic, 2 mL HCl (36%-38%) and 10 mL Ethanol were added and formed solution. After that the prepared Fe foil being immersed in solution in a 60 mL autoclave. Meanwhile the autoclave was sealed and maintained at 60°C for 4h, and then cooled naturally to room temperature. The Fe substrate attached with brown things was washed with water and ethanol for several times before characterization. Finally as-synthesized materials were subsequent annealing at 400 °C in air.

Calculation methods:
The discharge specific capacitance (C_{sp}) or areal capacitance(C_a) in the three-electrode was calculated from the discharge curves using the following equation:\[^{1,2}\]

\[C_{sp} = \frac{It}{m\Delta V} \quad C_a = \frac{It}{S\Delta V} \]

where I (A) is the discharge current, t (s) is the discharge time, ΔV (V) is the voltage interval of the discharge, and m (g) is the active material mass of the electrode. S is the geometrical area of the electrode.

The energy density and power density are calculated according to the following equations respectively:\[^{3,4}\]

\[E = 0.5C\Delta V^2 \quad P = \frac{E}{t} \]

Where C (F g$^{-1}$) is the specific capacitance, E (Wh kg$^{-1}$) is the energy density, P (W kg$^{-1}$) is the power density, I (A) is the discharge current, t (s) is the discharge time, and ΔV (V) is the potential window of discharge.

For supercapacitors, the charge balance between the two electrodes will follow the relationship $q^+ = q^-$, where q^+ means the charges stored at the positive electrode, q^- means the charges stored at the negative electrode. The charge stored by each electrode usually depends on the specific capacitance (C), the potential window for the charge/discharge process (ΔE), and the mass of the electrode (m) following Equation: $q = C \times \Delta E \times m$. The mass ratio between the positive and negative electrodes needs to follow: $^{[5]}

\[\frac{m_+}{m_-} = \frac{C_p \times \Delta E_p}{C_n \times \Delta E_n} \]

Therefore, the optimal mass ratio between such two electrodes can be determined by
the specific capacitance values and potential windows. The ZnCo$_2$O$_4$@MnO$_2$ to α-Fe$_2$O$_3$ mass ratio was adjusted to be 0.92:1. So the total mass of the two active electrode materials is 2.5 mg cm$^{-2}$.

![Figure S1](image1.png)

Figure S1 Electrochemical characterizations of the hierarchical ZnCo$_2$O$_4$@MnO$_2$ core-shell NTs arrays grown on Ni foam: charge-discharge voltage profiles at different current densities.

![Figure S2](image2.png)

Figure S2 Impedance Nyquist plots of the ZnCo$_2$O$_4$ NW arrays and the hierarchical ZnCo$_2$O$_4$@MnO$_2$ core-shell NTs arrays grown on Ni foam at open circuit potential.
Figure S3 (a) Typical FESEM images of the 3D porous α-Fe$_2$O$_3$; (b) Galvanostatic charging/discharging curves of the 3D porous α-Fe$_2$O at different current densities.

Table 1 Summarization of the supercapacitor performance of different electrode material.

<table>
<thead>
<tr>
<th>Electrode material</th>
<th>Current density</th>
<th>Specific capacitance</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnCo$_2$O$_4$@MnO$_2$ NTs</td>
<td>12 mA cm$^{-2}$</td>
<td>2.32 F cm$^{-2}$</td>
<td>This our work</td>
</tr>
<tr>
<td>Co$_3$O$_4$-MnO$_2$ NW/nanosheet</td>
<td>12 mA cm$^{-2}$</td>
<td>0.56 F cm$^{-2}$</td>
<td>Ref. 6</td>
</tr>
<tr>
<td>MnO$_2$-NiO NWs</td>
<td>12 mA cm$^{-2}$</td>
<td>0.35 F cm$^{-2}$</td>
<td>Ref. 7</td>
</tr>
<tr>
<td>Co$_3$O$_4$-NiO NWs</td>
<td>12 mA cm$^{-2}$</td>
<td>1.35 F cm$^{-2}$</td>
<td>Ref. 8</td>
</tr>
<tr>
<td>ZnCo$_2$O$_4$NWs</td>
<td>12 mA cm$^{-2}$</td>
<td>0.866 F cm$^{-2}$</td>
<td>Ref. 9</td>
</tr>
</tbody>
</table>

Reference:

2012, 24, 4186.

