Supporting Information

Cyclodextrin Modified Microgels as “Nanoreactor” for the Generation of Au Nanoparticles with Enhanced Catalytic Activity

He Jia, Dominik Schmitz, Andreas Ott, Andrij Pich, Yan Lu

bFunctional and Interactive Polymers, Institute of Textile and Macromolecular Chemistry, RWTH Aachen University, DWI Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056 Aachen, Germany.

*Corresponding Author: Email: van.lu@helmholtz-berlin.de; pich@dwi.rwth-aachen.de
Figure S1. Infrared spectra of pure PVCL, PVCL-α-CD(1.03 wt.-%) and PVCL-α-CD(13.08 wt.-%), a) whole spectrum, b) absorbance of C-O-C group of cyclodextrin around 1034 cm$^{-1}$.
Figure S2. Size dependence of PVCL microgels on the α-CD content (measurement at 20 °C).
Figure S3. a) Temperature dependent DLS measurement of pure PVCL, PVCL-α-CD(1.03 wt.-%) and PVCL-α-CD(13.08 wt.-%), b) Swelling ratio of pure PVCL, PVCL-α-CD(1.03 wt.-%) and PVCL-α-CD(13.08 wt.-%).

Figure S4. UV-vis spectras of the HAuCl₄ and NaOH mixture solutions with different amounts of PVCL and α-CD inside. The insert image is the photograph of the HAuCl₄ and NaOH mixture solutions with different amounts of PVCL and α-CD inside.

Figure S5. Infrared spectra of PVCL-α-CD(13.08 wt.-%) and PVCL-α-CD(13.08 wt.-%)-Au in the range of 3700-2750 cm⁻¹.
Figure S6. TGA spectra of PVCL-α-CD (13.08 wt.-%) microgels.

Figure S7. Size distribution of Au nanoparticles with different amount of HAuCl₄ according to the Table 1: (a) 0.1 ml; (b) 0.2 ml; (c) 0.3 ml; (d) 0.4 ml.
Figure S8. UV-vis spectra of PVCL-α-CD-Au microgel particles solutions with different amounts of HAuCl₄. The insert image is the photograph of the PVCL-α-CD-Au microgel particle solutions with different amount of HAuCl₄.

Figure S9. Raw data of LUMiSizer measurements of PVCL-α-CD(1.03 wt.-%) without (a) and loaded with Au-nanoparticles (b) and of the pure and loaded samples of PVCL-α-CD(13.08 wt.-%) (c and d).
Figure S10. Relative increase of transmission of PVCL-α-CD(1.03 wt.-%) (a) and PVCL-α-CD(13.08 wt.-%) (b) without and loaded with Au-nanoparticles.

Figure S11. UV-vis spectra of Nip mixed with PVCL (solid line) and pure Nip (dash line).
Figure S12. UV-vis spectra of Nip mixed with PVCL-α-CD(1.03 wt.-%) microgels (dash line) and pure Nip (solid line).

Figure S13. UV-vis spectra of Nip mixed with PVCL (dash dot); PVCL-α-CD(13.08 wt.-%)-Au microgels(solid line); PVCL-α-CD(13.08 wt.-%)microgels(dotted line). Concentrations: Nip: 10^{-5}mol/L; microgels: 0.203mg/ml; pH=10.
Figure S14. UV-vis spectra of Amp mixed with PVCL-α-CD (13.08 wt.-%) (dot line) and pure Amp (solid line).

Figure S15. UV-vis absorption spectra of DMNip reduced by sodium borohydride using PVCL-α-CD(13.08 wt.-%)-Au particles as catalyst.
Figure S16. The UV-vis spectra of DMNip: Black, mix with PVCL microgels; Red, mix with PVCL-α-CD(13.08 wt-%) microgels; Blue, mix with PVCL-α-CD(13.08 wt-%)-Au microgels. Concentrations: DMNip: 10^{-5} mol/L; microgels: 0.203 mg/ml.

![UV-vis spectra](image)

Figure S17. The TEM image of CTAB-stabilized Au nanoparticles with radius of around 5 nm.

![TEM image](image)
Figure S18. The UV-vis spectra of 4-nitrophenol: Black, pure 4-nitrophenol; Red, mix with CTAB-stabilized Au nanoparticles with radius of around 5 nm.