Hierarchical assembly of SnO$_2$ nanowires on MnO$_2$ nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage

Long Pan,a Ke-Xin Wang,c Xiao-Dong Zhu,b Xu-Ming Xiea and Yi-Tao Liua

aKey Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China

cDepartment of Chemistry, Harbin Institute of Technology, Harbin 150001, China
Fig. S1 XRD pattern of MnO$_2$ nanosheets showing four well-resolved peaks (001, 002, −111 and 005) of δ-MnO$_2$ (JCPDS card No. 80–1098).
Fig. S2 Raman spectrum of MnO$_2$ nanosheets showing two well-resolved peaks. Note that the peak at the higher wavenumber can be attributed to the symmetric stretching vibration ν_2(Mn–O) of MnO$_6$ groups, while the peak at the lower wavenumber can be attributed to the ν_3(Mn–O) stretching vibration in the basal plane of [MnO$_6$] sheets.$^{1-3}$

Fig. S3 TGA curve of MnO$_2$ nanosheets showing 12.0 wt% organic content and 9.2 wt% crystal water content. Note that our K$^+$-intercalated MnO$_2$ nanosheets have a chemical formula of K$_{0.46}$Mn$_{1.54}$Mn$_{0.46}$O$_4$·1.4H$_2$O, corresponding to a theoretical crystal water content of 11.6 wt%. The actual crystal water content is calculated to be 10.4 wt% when we take into account the 12.0% organic content, which is in agreement with the theoretical value.

Fig. S4 XRD pattern of SnO$_2$ nanowires showing eight well-resolved peaks (110, 101, 111, 211, 220, 002, 221 and 112) of rutile SnO$_2$ (JCPDS card No. 41−1445).
Fig. S5 Raman spectrum of SnO$_2$ nanowires showing three well-resolved peaks. Note that the peak at 579 nm related to the facet surface area of a crystal arises from nanoscale SnO$_2$ with small grain sizes.1

Fig. S6 TGA curve of SnO$_2$ nanowires showing 10.6 wt% organic content.
Fig. S7 Raman spectrum of SnO$_2$/MnO$_2$ 1/2D hybrid architecture. The circles and diamonds indicate the characteristic peaks of SnO$_2$ nanowires and MnO$_2$ nanosheets, respectively, with a certain degree of superposition (550–650 cm$^{-1}$) due to their very close peak positions.
Fig. S8 (a) Mn 2p and (b) Sn 3d XPS spectra of SnO$_2$/MnO$_2$ 1/2D hybrid architecture. In the binding energy range of 660–635 eV, the two peaks at 652.8 and 641.3 eV are assigned to Mn 2p$_{1/2}$ and 2p$_{3/2}$ orbitals, indicating the Mn(IV) state in the SnO$_2$/MnO$_2$ 1/2D hybrid architecture without any alterations.1 As to the XPS spectrum of SnO$_2$ in the energy range of 500–480 eV, the two peaks at 695.0 and 486.5 eV correspond to Sn 3d$_{3/2}$ and 3d$_{5/2}$ orbitals, demonstrating that the Sn atoms are in the form of SnO$_2$.2–5

Fig.S9 SEM image of SnO$_2$/MnO$_2$ 1/2D hybrid architecture and the corresponding EDS maps showing a homogeneous distribution of Mn, Sn and O elements.
Table S1 – Elemental composition of SnO$_2$/MnO$_2$ 1/2D hybrid architecture.

<table>
<thead>
<tr>
<th></th>
<th>Mn (wt%)</th>
<th>Sn (wt%)</th>
<th>MnO$_2$ (wt%)</th>
<th>SnO$_2$ (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual ratio</td>
<td>27.07</td>
<td>1.34</td>
<td>60.78</td>
<td>39.22</td>
</tr>
<tr>
<td>Starting ratio</td>
<td>–</td>
<td>–</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

\(^a\)Note that SnO$_2$ nanowires cannot be completely dissolved in concentrated H$_2$SO$_4$ at ambient temperature, so their accurate composition is calculated by subtracting that of MnO$_2$ nanosheets from 100 wt%. Quantitatively, the content of MnO$_2$ nanosheets is calculated by considering the organic and crystal water contents, and is 60.78 wt%. Therefore, the content of SnO$_2$ nanowires is 39.22 wt%. These values agree well with their starting ratio which again confirm a quite high self-assembly efficiency.
Fig. S11 TEM images of SnO$_2$/MnO$_2$ 1/2D hybrid architecture after 200 charging−discharging cycles at a current density of 200 mA g$^{-1}$. It can be seen that after repeated lithiation/delithiation, the SnO$_2$/MnO$_2$ 1/2D hybrid architecture still preserves its original morphology without stacking or collapsing.
Fig. S12 Nyquist plots of SnO$_2$/MnO$_2$ 1/2D hybrid architecture as well as neat MnO$_2$ nanosheets and SnO$_2$ nanowires from 100 kHz to 0.01 Hz. The diameter of the semicircle for the SnO$_2$ nanowires, corresponding to the charge transfer resistance (R_{ct}), is much smaller than that of the MnO$_2$ nanosheets, demonstrating the higher conductivity of the former.