Supporting Information

Rational design of diketopyrrolopyrrole-based oligomers for high performance small molecular photovoltaic materials via extended framework and multiple fluorine substitution

Qing-Ru Yin, Jing-Sheng Miao, Zhuo Wu, Zheng-Feng Chang, Jin-Liang Wang,* Hong-Bin Wu,* and Yong Cao

Prof. J.-L. Wang, Q.-R.Yin,[††] Z. Wu,[††] Z.-F. Chang, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
E-mail: jinlwang@bit.edu.cn
J.-S. Miao,[††] Prof. H.-B. Wu, Prof. Y. Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
E-mail: hbwu@scut.edu.cn

[††] These authors contributed equally to this work.

Experimental Section

SCLC device fabrication and characterization:
The structures of hole only and electron only device are ITO/PEDOT/donor materials: PC_{71}BM/MoO_{3}/Al and ITO/ZnO/PFN/ donor materials: PC_{71}BM/Ca/Al, respectively.
The mobility was determined by fitting the dark current to the model of the filed-independent space charge limited current (SCLC) according to the Mott-Gurney law,
given by \(J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{V^2}{L} \) for hole only device and \(J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu \frac{V^2}{L} \) for electron only device.

Where \(J \) is the current density, \(\varepsilon_0 \) is the permittivity of free space, \(\varepsilon_r \) is the relative permittivity of the material, \(\mu \) is the mobility, \(V \) is the applied voltage, and \(L \) is the thickness of the active layer.

[Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015]
permittivity of the material, μ_h is the hole mobility, μ_e is the electron mobility, L is the film thickness of the active layer, and V is the effective voltage which is determined by subtracting the built-in voltage (V_{bi}) from the applied voltage ($V = V_{app} - V_{bi}$). The hole and electron mobility can be directly calculated from $J-V$ curves.

Figure S1. Current density-voltage ($J-V$) characteristics of devices based on DPPBIT4F blend with PC$_{71}$BM (different blend ratio and before/after solvent treatment).
Figure S2. Current density-voltage (J-V) characteristics of devices based on DPPBIT blend with PC_{71}BM (different blend ratio and before/after solvent treatment).

Figure S3. Absorption spectra of DPPBIT: PC_{71}BM (1:1, 1:2, and 1:3, w/w) blend films with or without CH$_2$Cl$_2$ vapor annealing.
Figure S4. EQE plots of devices based on DPPBIT4F blend with PC$_{71}$BM (1:1, 1:2, and 1:3, w/w) after CH$_2$Cl$_2$ vapor annealing.

Figure S5. The $J-V$ plots of the devices with a configuration of ITO/PEDOT/donor materials: PC$_{71}$BM/MoO$_3$/Al for hole only device (a) and ITO/ZnO/PFN/ donor materials: PC$_{71}$BM/Ca/Al for electron only device (b) before and after CH$_2$Cl$_2$ vapor annealing, respectively.
Copies of 1H and 13C NMR, and MALDI-TOF MS Spectra

1H NMR spectrum for compound 4
13C NMR spectrum for compound 4.
1H NMR spectrum for compound 7
13C NMR spectrum for compound 7.
1H NMR spectrum for DPPBIT
13C NMR spectrum for **DPPBIT**.
1H NMR spectrum for DPPBIT4F
13C NMR spectrum for DPPBIT4F.
MALDI-TOF mass spectrum of DPPBIT.
MALDI-TOF mass spectrum of **DPPBIT4F**.