Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015

Support Information

Delineating the Roles of Co₃O₄ and N-doped Carbon Nanoweb (CNW) in Bifunctional Co₃O₄/CNW Catalysts for Oxygen Reduction and Oxygen Evolution Reactions

Siyang Liu,^a Longjun Li,^a Hyun S. Ahn,^b and Arumugam Manthiram^{a,*} ^a Materials Science and Engineering Program & Texas Materials Institute ^b Center for Electrochemistry and Department of Chemistry The University of Texas at Austin, Austin, Texas 78712, United States

*Corresponding author: (E-mail) rmanth@mail.utexas.edu

Table of Contents

Fig. S1	Thermogravimetric analysis of Co ₃ O ₄ /CNW
Fig. S2	SEM images of Co ₃ O ₄ /CNW-A, Co ₃ O ₄ /CNW-B, and Co ₃ O ₄ /CNW-C
Fig. S3	Scanning Transmission Electron Microscopy images of (a) $Co_3O_4/CNW-A$, (b) $Co_3O_4/CNW-B$, and (c) $Co_3O_4/CNW-C$.
Fig. S4	High-resolution TEM image of Co ₃ O ₄ /CNW-C
Fig. S5	Brunner-Emmett-Teller (BET) isotherms of CNW and Co ₃ O ₄ /CNW
Fig. S6	Linear voltammograms of catalysts cast onto a rotating disk electrode at various rotation speeds from 0 to -0.8 V <i>vs.</i> SCE
Fig. S7	Rotating disk electrode voltammograms after iR correction at 2000 rpm from 0 to 0.8 V vs. SCE in different concentrations of KOH solutions
Fig. S8-S12	Tafel plots of catalysts loaded on a glassy carbon electrode recorded at 1 mV s ⁻¹ in $0.05 - 0.8$ M KOH
Fig. S13-S18	Cyclic voltammograms in N ₂ -saturated KOH from 0 to 0.8 V vs. SCE $(0.05 - 1 \text{ M KOH})$
Fig. S19	Cyclic voltammograms in N ₂ -saturated 0.1 M KOH from -0.8 V to 0.8 V vs. SCE recorded after two cycles at a scan rate of 30 mV s ⁻¹
Fig. S20	Linear voltammograms of Co_3O_4 /CNW-C cast onto a rotating disk electrode from 0 to -0.8 V vs. SCE with a Pt mesh as the counter electrode or a carbon foam as the counter electrode. Rotation speed was 1600 rpm and scan rate was 10 mV s ⁻¹ .
Fig. S21	Linear voltammograms of Co_3O_4 /CNW-C cast onto a rotating disk electrode from 0 to 0.8 V vs. SCE with a Pt mesh as the counter electrode or a carbon foam as the counter electrode. Rotation speed was 2000 rpm and scan rate was 10 mV s ⁻¹ .

Figure S1. Thermogravimetric analysis of Co₃O₄/CNW.

Figure S2. SEM images of (a) Co₃O₄/CNW-A, (b) Co₃O₄/CNW-B, and (c) Co₃O₄/CNW-C.

Figure S3. Scanning transmission electron microscopy images of (a) Co_3O_4/CNW -A, (b) Co_3O_4/CNW -B, and (c) Co_3O_4/CNW -C.

Figure S4. High-resolution TEM image of Co₃O₄/CNW-C.

Figure S5. Brunner-Emmett-Teller (BET) isotherms of CNW and Co_3O_4 /CNW composite materials.

Figure S6. Linear voltammograms of catalysts cast onto a rotating disk electrode at various rotation speeds from 0 to -0.8 V vs. SCE.

Figure S7. Rotating disk electrode voltammograms after iR correction at 2000 rpm from 0 to 0.8 V vs. SCE in different concentrations of KOH solutions.

Figure S8. Tafel plots of catalysts loaded onto a glassy carbon electrode recorded at 1 mV s⁻¹ in 0.05 M KOH.

Figure S9. Tafel plots of catalysts loaded onto a glassy carbon electrode recorded at 1 mV s⁻¹ in 0.1 M KOH.

Figure S10. Tafel plots of catalysts loaded onto a glassy carbon electrode recorded at 1 mV s⁻¹ in 0.2 M KOH.

Figure S11. Tafel plots of catalysts loaded onto a glassy carbon electrode recorded at 1 mV s⁻¹ in 0.5 M KOH.

Figure S12. Tafel plots of catalysts loaded onto a glassy carbon electrode recorded at 1 mV s⁻¹ in 0.8 M KOH.

Figure S13. Cyclic voltammograms in N₂-saturated 0.05 M KOH from 0 to 0.8 V vs. SCE.

Figure S14. Cyclic voltammograms in N2-saturated 0.1 M KOH from 0 to 0.8 V vs. SCE.

Figure S15. Cyclic voltammograms in N2-saturated 0.2 M KOH from 0 to 0.8 V vs. SCE.

Figure S16. Cyclic voltammograms in N2-saturated 0.5 M KOH from 0 to 0.8 V vs. SCE.

Figure S17. Cyclic voltammograms in N2-saturated 0.8 M KOH from 0 to 0.8 V vs. SCE.

Figure S18. Cyclic voltammograms in N_2 -saturated 1 M KOH from 0 to 0.8 V vs. SCE.

Figure S19. Cyclic voltammograms in N₂-saturated 0.1 M KOH from -0.8 V to 0.8 V vs. SCE recorded after two cycles at the scan speed of 30 mV s⁻¹.

Figure S20. Linear voltammograms of Co_3O_4 /CNW-C cast onto a rotating disk electrode from 0 to -0.8 V vs. SCE with a mesh as the counter electrode (black) or a carbon foam (GoodFellow) as the counter electrode (red). Rotation speed was 1600 rpm and scan rate was 10 mV s⁻¹.

Figure S21. Linear voltammograms of Co_3O_4 /CNW-C cast onto a rotating disk electrode from 0 to 0.8 V vs. SCE with a Pt mesh as the counter electrode (black) or a carbon foam (GoodFellow) as the counter electrode (red). Rotation speed was 2000 rpm and scan rate was 10 mV s⁻¹.