Hierarchical donut-shaped LiMn$_2$O$_4$ as advanced cathode material for lithium-ion batteries with excellent rate capability and long cycle life†

Weiwei Sun,‡a Huiqin Liu,‡a Tao Peng,a Yumin Liu,b Gongxun Bai,c Sen Kong,a Shishang Guo,a,* Meiya Li,a,* and Xing-Zhong Zhaoa,*

a Key Laboratory of Artificial Micro/Nano-Structures of Ministry of Education
School of Physical Science and Technology, Wuhan University
Wuhan 430072, Hubei, PR China
E-mail: gssyhx@whu.edu.cn
myli@whu.edu.cn
xzzhao@whu.edu.cn

b Institute for Interdisciplinary Research (IIR), Jianghan University
Wuhan 430056, Hubei, PR China

F Department of Applied Physics, The Hong Kong Polytechnic University,
Hong Kong, China.

‡ These authors contributed equally to the work.
Fig. S1 N$_2$ adsorption-desorption isotherms of the DS-LMO. The inset shows the BJH pore-size distribution of the DS-LMO.
Fig. S2 The first charge/discharge profiles of DS-LMO at C/2 (the inset is CV plot at 0.05 mV s\(^{-1}\)).
Fig. S3 Discharge curves of DS-LMO at different discharge rates of 1 C (140 mA g$^{-1}$) to 55 C (7700 mA g$^{-1}$).
Fig. S4 Comparison of the rate capabilities of DS-LMO, LMO nanowires,27 LMO nanotubes,28 LMO microcubes29 and LMO nanocones.34
Fig. S5 TEM image for DS-LMO after 500 cycles at discharge rates of 10 C.