Electronic Supplementary Information

Iron and nitrogen co-doped carbon nanotubes@hollow carbon fibers derived from plant biomass as efficient catalysts for oxygen reduction reaction

Mian Li,a Yueping Xiong,b Xiaotian Liu,b Ce Han,a Yufan Zhang,a Xiangjie Bo,a* and Liping Guo,a*

a Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China

b School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China

* Corresponding authors
Tel.: +86-0431-85099762.
Fax: +86-0431-85099762.
E-mail address: baoxj133@nenu.edu.cn (X. Bo); guolp078@nenu.edu.cn (L. Guo).
Fig. S1 Elemental mapping spectra of C, N, and Fe for the PCF composite. In the colorized image red represents the C elements and blue represents the N elements.

Fig. S2 EDX spectrum of the PCF.
Fig. S3 Elemental mapping spectra of C, N, and Fe for the N/PCF composite. In the colorized image red represents the C elements and blue represents the N elements.

Fig. S4 EDX spectrum of the N/PCF.
Fig. S5 TEM image of the Fe/N/CNT@PCF sample before the acid pickling process in 2 M H$_2$SO$_4$.

Fig. S6 EDX spectrum of the Fe/N/CNT@PCF before the acid pickling process in 2 M H$_2$SO$_4$.
Fig. S7 EDX spectrum of the Fe/N/CNT@PCF after the acid pickling process in 2 M H$_2$SO$_4$.

Fig. S8 FT-IR spectra of the PCF, N/PCF, and Fe/N/CNT@PCF samples.

Fig. S9 (A) RDE voltammograms of the PCF in O$_2$-saturated 0.1 M KOH with various rotation rates at a scan rate of 5 mV s$^{-1}$. (B) The corresponding Koutecky–Levich plots of the PCF catalyst at different potential.