Supplementary Information

Crown-ether functionalized fullerene as solution-processable cathode buffer layer for high performance perovskite and polymer solar cells

Xiaodong Liu,‡a Weixiang Jiao,‡b Ming Lei,*b Yi Zhou,*a Bo Song,*a and Yongfang Li*ac

‡Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.

bDepartment of Chemistry, Zhejiang University, Hangzhou, 310027, China.
cInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

‡Dr. Xiaodong Liu and Mr. Weixiang Jiao contributed equally to this work.

*Corresponding authors, E-mail: yizhou@suda.edu.cn, songbo@suda.edu.cn, leiming@zju.edu.cn, liyf@iccas.ac.cn
Fig. S1 AFM height images of the pristine P3HT:PC₆₀BM and P3HT:PC₆₀BM/PCBC films prepared on ITO/PEDOT:PSS substrates for a 5 μm x 5 μm surface area. The root-mean-square (RMS) roughnesses of the P3HT:PC₆₀BM films with and without a PCBC layer on top are 15.9 and 19.9 nm, respectively.

Fig. S2 (a) The Nyquist plots (symbols) and fitted curves (solid curves) for the pero-SCs based on CH₃NH₃PbI_{3-x}Cl_x without and with PCBC CBL, measured in the dark and with applied voltage near the V_{oc} (0.97 V). (b) The equivalent circuit used for fitting the impedance data.
Table S1 The fitted ACIS parameters of planar pero-SCs based on CH$_3$NH$_3$PbI$_{3-x}$Cl$_x$.

<table>
<thead>
<tr>
<th>CBL</th>
<th>R_{OS} (Ω cm2)</th>
<th>R_1 (Ω cm2)</th>
<th>CPE$_{1-T}$ (μF cm2)</th>
<th>CPE$_{1-P}$</th>
<th>R_2 (Ω cm2)</th>
<th>CPE$_{2-T}$ (μF cm2)</th>
<th>CPE$_{2-P}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1.42</td>
<td>3.49</td>
<td>2.48</td>
<td>0.83</td>
<td>22.14</td>
<td>0.18</td>
<td>0.98</td>
</tr>
<tr>
<td>PCBC</td>
<td>1.32</td>
<td>4.04</td>
<td>0.52</td>
<td>0.94</td>
<td>13.96</td>
<td>0.14</td>
<td>1.03</td>
</tr>
</tbody>
</table>