Electronic Supplementary Information (ESI)

Hydroxide ion incorporation and conduction mechanisms in tin pyrophosphate

– A first-principles study

Junya Terasaka¹, Kazuaki Toyoura¹,* , Atsutomo Nakamura¹, and Katsuyuki Matsunaga¹,²

¹Department of Materials Science and Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
²Nanostructures Research Laboratory, Japan Fine Ceramics Center, Atsuta, Nagoya 456-8587, Japan

* Electronic address: toyoura@numse.nagoya-u.ac.jp

Table of content:

Fig. S1 (a) The calculated proton sites (white small balls bonding to an oxide ion) and (b) tin sites (green and purple balls) and their site energies. The site energies in the parentheses are with reference to that at the most stable site in each figure. The atomic positions of the host lattice are shown by their original positions before structural optimizations.

Fig. S2 Hydroxide-ion migration trajectories in SnP₂O₇ evaluated by the NEB calculations. Figures (a)-(c) correspond to the processes of (i)-(ii), (iii), and (iv) in Fig. 6, respectively.
Fig. S1 (a) The calculated proton sites (white small balls bonding to an oxide ion) and (b) tin sites (green and purple balls) and their site energies. The site energies in the parentheses are with reference to that at the most stable site in each figure. The atomic positions of the host lattice are shown by their original positions before structural optimizations.
Fig. S2 Hydroxide-ion migration trajectories in SnP$_2$O$_7$ evaluated by the NEB calculations. Figures (a)-(c) correspond to the processes of (i)-(ii), (iii), and (iv) in Fig. 6, respectively.