Supporting Information

Highly efficient photocatalytic conversion of CO₂ into solid CO using H₂O as a reductant over Ag-modified ZnGa₂O₄

Zheng Wang¹, Kentaro Teramura¹,b,c*, Saburo Hosokawa¹,b, Tsunehiro Tanaka¹,b,*

a. Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
b. Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
c. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Figure S1 XRD patterns in the range between 28° and 40° of ZnGa$_2$O$_4$ calcined at 973 K for 20 h and ZnO as a reference.
Figure S2 TEM images of Ag-modified ZnGa$_2$O$_4$ prepared by chemical reduction method before (A, B) and after (C, D) the photocatalytic conversion of CO$_2$. ZnGa$_2$O$_4$ was calcined at 1123 K for 40 h. The loading amount of Ag cocatalyst was 1.0 wt%.