Preparation of graphene-based composite aerogel and the effects of carbon nanotubes on preserving porous structure of aerogel and improving its capacitor performance

Zhihua Maab, Xiaowei Zhaoab, Chunhong Gongcd, Jingwei Zhang*abc, Jiwei Zhangab, Xiufang Guab, Lei Tongab, Jingfang Zhouc and Zhijun Zhang*ab

a Key Laboratory of Ministry of Education for Special Functional Materials, Henan University, Kaifeng, 475004, P.R. China. E-mail: jwzhang@henu.edu.cn and zhangzhijun@henu.edu.cn

b Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province, China

c Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia

d College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P.R. China

We prepared more control samples with different ratio of graphene and CNT by varying amount of ethanol and the as-obtained samples were denoted GCA/CNT-S and GCA/CNT-L, with an ethanol feeding speed of 0.2 mL/min and 1.0 mL/min for 45 mins, respectively.

![SEM images of GCA/CNT (a, b); TEM image of GCA/CNT (c)](image)

Fig.S1 SEM images of GCA/CNT (a, b); TEM image of GCA/CNT (c)

![SEM image of GCA/CNT-S (a) and GCA/CNT-L (b).](image)

Fig.S2 SEM image of GCA/CNT-S (a) and GCA/CNT-L (b).
The SEM images of GCA/CNT-S and GCA/CNT-L were shown in Fig. S2. It is observed that the deposited amount of CNT can be easily changed by varying the amount of ethanol. However, GCA/CNT-L performs some agglomeration of the CNTs, when the total amount of ethanol increases to 45mL.

![Fig. S2 SEM images of GCA/CNT-S and GCA/CNT-L](image)

Fig. S3 Galvanostatic charge-discharge curves of GCA/CNT-S (a) and GCA/CNT-L (b) measured at different current density; Cyclic voltammetry curves measured at different scan rate of GCA/CNT-S (c) and GCA/CNT-L (d).

In addition, we have also performed the CV and galvanostatic charge-discharge tests of these samples and the results are provided in Fig. S3. The specific capacitances of GCA/CNT-S and GCA/CNT-L, based on the galvanostatic discharge curves, are calculated to be 159.5 and 198.2 F/g at a current density of 0.5 A/g, respectively. It is found that, the specific capacitance increases with higher CNTs amount, comparing GCA, GCA/CNT-S and GCA/CNT. That is attributed to the effect of carbon nanotubes on improving electrical conductivity and preserving more porous structure during the pressure treatment. Nevertheless, GCA/CNT-L exhibits a little lower capacitance than that of GCA/CNT, which is due to high weight ratio of CNTs in the composites and its lower SSA of CNT, which contributes relatively lower specific capacitance.