Supporting Information

A High-Performance Anode for Lithium Ion Batteries: Fe₃O₄

Microspheres Encapsulated in Hollow Graphene Shells

Yu Jiang⁺, Zhong-Jie Jiang⁺,* Lufeng Yang⁺, Shuang Cheng⁺, Meilin Liu⁺,ᵇ⁺*

⁺ New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
ᵇ School of Materials Science & Engineering, GA Institute of Technology, Atlanta, GA 30332, USA.

Figure S1. An SEM image of a physical mixture of Fe₃O₄ and rGO.

Figure S2. Comparison of the rate capabilities and cycle performance of the electrodes based on the Fe₃O₄@rGO composite, the bare Fe₃O₄ microspheres, and a physical mixture of Fe₃O₄ microspheres and rGO tested at rates varied from 0.1 to 5.0 A g⁻¹.
Figure S3. Galvanostatic discharge-charge profiles of electrodes based on (a) the bare Fe₃O₄ microspheres, (b) a mixture of Fe₃O₄ microsphere and RGO, and (c) the Fe₃O₄@RGO composites at rates varied from 0.1 to 5.0 A g⁻¹.

Figure S4. SEM images of (a) the Fe₃O₄ microspheres and (b) the Fe₃O₄@rGO composites as the anode of lithium ion batteries discharged/charged for 100 cycles.