Supporting Information

Urchin-like Pd@CuO-Pd Yolk-shell Nanostructures: Synthesis, Characterization and Electrocatalysis

Ying Guoa,b, Yi-Tao Xua, Bo Zhaoa,b, Tao Wanga, Kai Zhangc, Matthew M. F. Yuenc, Xian-Zhu Fua, Rong Suna, Ching-Ping Wongd,e

aShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China

bShenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, P.R. China

cDepartment of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

dDepartment of Electronics Engineering, The Chinese University of Hong Kong, Hong Kong, China

eSchool of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States

*Corresponding author, E-mail: xz.fu@siat.ac.cn; rong.sun@siat.ac.cn
Figure S1. The EDS data of (a) the Pd@Cu₂O truncated octahedrons and (b) the urchin-like Pd@CuO-Pd yolk-shell nanostructures.

Figure S2. TEM image and HRTEM image of the urchin-like Pd@CuO-Pd yolk-shell nanostructures. Inset: The selected-area electron diffraction (SAED) pattern.
Figure S3. The survey XPS spectra of (a) the Pd@Cu₂O truncated octahedrons and (b) the urchin-like Pd@CuO-Pd yolk-shell nanostructures.
Figure S4. (a) SEM image and (b) XRD patterns of pure Cu$_2$O nanoparticles.
Figure S5. (a) SEM image and (b) XRD patterns of the CuO nanoparticles.
Figure S6. (a) TEM image and (b) XRD patterns of the hollow Pd nanoparticles. (c) CV curves of the hollow Pd nanoparticles in N$_2$-saturated 0.1 M KOH solution with 3 mM glucose at a scan rate of 100 mV s$^{-1}$. (d) Amperometric response of the hollow Pd nanoparticles after successive addition of glucose in N$_2$-saturated 0.1 M KOH at 0.5 V (vs Ag/AgCl).
Figure S7. TEM image of the Pd mixtures obtained by etching CuO in the urchin-like Pd@CuO-Pd yolk-shell nanostructures.
<table>
<thead>
<tr>
<th>Materials</th>
<th>Sensitivity (µA cm⁻² mM⁻¹)</th>
<th>Response time (s)</th>
<th>Linear Range</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd@CuO-Pd</td>
<td>695</td>
<td>< 3 s</td>
<td>10 µM-6 mM</td>
<td>This work</td>
</tr>
<tr>
<td>CuO fibers</td>
<td>431.3</td>
<td>1</td>
<td>6 µM-2.5 mM</td>
<td>1</td>
</tr>
<tr>
<td>CuO nanoparticles</td>
<td>629</td>
<td>--</td>
<td>5 µM-6 mM</td>
<td>2</td>
</tr>
<tr>
<td>CuO nanospheres</td>
<td>404.53</td>
<td>--</td>
<td>1 µM-2.55 mM</td>
<td>3</td>
</tr>
<tr>
<td>Cu nanocluster/CNTs</td>
<td>250</td>
<td>5</td>
<td>0.7µM-3.5 mM</td>
<td>4</td>
</tr>
<tr>
<td>Pd@Cys-C₆₀</td>
<td>35.46</td>
<td>--</td>
<td>2.5µM-1.0mM</td>
<td>5</td>
</tr>
<tr>
<td>Cu/Cu₂O HMs</td>
<td>476</td>
<td>< 2</td>
<td>0.22 mM-10.89 mM</td>
<td>6</td>
</tr>
<tr>
<td>Cu₂O/GNs</td>
<td>285</td>
<td><9</td>
<td>0.3 mM-3.3 mM</td>
<td>7</td>
</tr>
<tr>
<td>Cu₂O nanocubes</td>
<td>200</td>
<td><9</td>
<td>--</td>
<td>7</td>
</tr>
<tr>
<td>Pt-Pb nanowire</td>
<td>11.25</td>
<td>~10</td>
<td>up to 11 mM</td>
<td>8</td>
</tr>
<tr>
<td>Pd/graphene hybrid</td>
<td>--</td>
<td>9</td>
<td>10µM-5 mM</td>
<td>9</td>
</tr>
</tbody>
</table>
Notes and references