Supporting Information

Vertically Aligned \(\text{VO}_2(\text{B})\) Nanobelt Forest and Its Three-Dimensional Structure on Oriented Graphene for Energy Storage

Guofeng Ren, Md Nadim Ferdous Hoque, Xuan Pan, Juliusz Warzywoda, and Zhaoyang Fan*

1Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, Texas, 79409, USA;

2Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, USA.

†Present address: Wuhan Branch of the National Science Library, Chinese Academy of Sciences, Wuhan 430071, China.

* Corresponding author: zhaoyang.fan@ttu.edu
Figure S1. (a) Top view SEM image of VOG reveals a maze-like structure. (b) Side view SEM image of VOG indicates the vertical growth of the VOG flakes.

Figure S2. SEM image of the randomly oriented VO$_2$(B) NBs grown on a substrate without VOG reveals the critical role of VOG in the vertically-oriented growth of VO$_2$(B) NBs.
Figure S3. (a) SEM image of EOG encircling the nickel skeleton in a radial mode. EOG uniformly covers the entire Ni foam. (b) SEM image of 3D VO$_2$(B) NB forest on the EOG/Ni foam template. VO$_2$(B) NB forest uniformly covers the entire EOG/Ni foam.

Figure S4. (a, b) Cross-sectional SEM images of 3D VO$_2$(B) NB forest indicate close contacts between VOG and VO$_2$(B) NBs as well as VOG and Ni substrate.
Figure S5. C-D curves of LIB based on EOG/Ni foam at the lowest current of 0.03 mA reveal that the lithium ion storage capacity of EOG/Ni foam only occurs at a potential much lower than 1 V.

Figure S6. C-D curves of LIB based on 3D VO$_2$(B) NB forest at a current density of 0.03 A g$^{-1}$ used to activate the battery. The first C-D cycle shows a large charge capacity of 600 mAh g$^{-1}$ and a discharge capacity of 550 mAh g$^{-1}$, and exhibits irreversible capacity of 50 mAh g$^{-1}$ with a coulombic efficiency of 92%.