Stannous ions reducing graphene oxide at room temperature to produce SnO$_x$-porous carbon nanofiber mats as binder-free anodes for lithium-ion batteries

Feilong Yan,a Xuan Tang,a Yuehua Wei,a Libao Chen,b Guozhong Cao,c,d,* Ming Zhang,a,**
Taihong Wanga

a Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Microelectronics, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P.R. China. E-mail: zhangming@hnu.edu.cn
b State Key Laboratory for Power Metallurgy, Central South University, Changsha, 410083, P.R. China.
c Department of Materials Science & Engineering, University of Washington, Seattle, Washington, 98195, USA. E-mail: gzcao@uw.edu
d Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
Figure S1 (a) SEM images of as-prepared SGCF; (b) SEM images of the SGCF-230 mat, treated at 230°C in air. SEM images of as-prepared SGCFs and SGCF-230 composites are shown without any obvious formation of nanoparticles; (c) high-magnification SEM image of SCF-700 mats.
Figure S2 FT-IR spectra for rGO and GO.

The FT-IR spectra of GO confirmed the presence of oxygen-containing groups, such as C–OH ($\nu_{\text{C-OH}}$ at 3420 cm$^{-1}$), C–O–C ($\nu_{\text{C-O-C}}$ at 1220 cm$^{-1}$), and C=O in carboxylic acid moieties ($\nu_{\text{C=O}}$ at 1730 cm$^{-1}$). Other characteristic vibrations were the O–H deformation peak at 1400 cm$^{-1}$. The peak at 1620 cm$^{-1}$ was assigned to the contributions from the skeletal vibrations of the graphitic domains. For the rGO, the carboxylic acid vibration band ($\nu_{\text{C=O}}$ at 1730 cm$^{-1}$) disappeared. A weak signal for the C–OH stretching vibration at 3420 cm$^{-1}$ could be ascribed to the vibrations of the adsorbed water molecules. So it could be concluded that GO was reduced by the stannous ions.1,2
Figure S3 (a) Low and (b) high magnification TEM images of the SGCF-700. It is clear that porous carbon nanofibers are well-distributed and slippy (Figure S2a). Furthermore, there seems to be some SnO$_x$ nanoparticles being uniform density distribution on the surface in Figure S12b.
Figure S4 (a-d) Elemental mapping images showing the homogenous distribution of all four elements of C, N, Sn and O in carbon nanofibers.
Figure S5 Nitrogen adsorption and desorption isotherms (a) and pore size distributions (b) of the SGCF-700.
Figure S5 (a) high-magnification SEM image of SGCF-700 after 1000 cycles, (b) and SCF-700 after 100 cycles.
The amount of SnO and SnO$_2$ was easily by TGA. The weight ratio can be estimated to be 18.5wt% for SnO and 13.1wt% for SnO$_2$. However, the remaining weight of the stabilized electrospun PAN nanofibers and graphene at 700 °C in inert gases was 50% and 80%, respectively. The precursor solution was 6115 mg and GO was 0.6 mg, so the carton nanofiber was 3057.5 mg and rGO was 0.206 mg at 700 °C in inert gases. At last, we can approximatively calculate the amount of CNF, graphene, SnO, and SnO$_2$ was 67.3wt%, 0.1wt%, 18.5wt% and 13.1wt%, respectively.

The calculation method to estimate the weight ratios of SnO and SnO$_2$ in SGCF-700

The weight ratio of SnO:

\[
\text{SnOwt}\% = (\text{weight}-\text{residue}) \times \text{SnOatom}\% \times \frac{M_{\text{SnO}}}{M_{\text{SnO}_2}}
\]

\[
= 33.8\text{wt}\% \times 61.3\% \times \frac{134.7}{150.7}
\]

\[
= 18.5\text{wt}\%
\]

The weight ratio of SnO$_2$:

\[
\text{SnO}_2\text{wt}\% = (\text{weight}-\text{residue}) \times \text{SnO}_2\text{atom}\%
\]

\[
= 33.8\text{wt}\% \times 38.7\%
\]

\[
= 13.1\text{wt}\%
\]

The calculation method to estimate the weight ratios of CNF and graphene in SGCF-700 is shown as follow.

The weight of rGO:

\[
m_{\text{rGO}} = m_{\text{GO}} \times \frac{M_{\text{GO}}}{M_{\text{GO}}} \times 80\%
\]
\[
= 0.4 \times 1.5 \times \frac{12}{28} \times 80% \\
= 0.206 \text{mg}
\]

The weight ratio of CNF:

\[
\text{CNFwt\%} = \frac{(\text{DMF+PAN}) \times 50\%}{(\text{DMF+PAN}) \times 50\% + \text{m}_{\text{rGO}}} \times 67.4\% \\
= \frac{(5685+430) \times 50\%}{(5685+430) \times 50\% + 0.2} \times 67.4\% \\
= 67.3\%
\]

Reference