Supporting Information

Highly Transparent Self-Cleaning Superhydrophobic Surface by Organosilane-coated Alumina Particles Deposited via Electrospraying

Hyun Yoon1,†, Hayong Kim1,†, Sanjay S. Latthe2, Min-woo Kim1,3, Salem Al-Deyab4,

Sam S. Yoon1,*

1School of Mechanical Engineering, Korea University, Seoul 136-713, Korea
2Photocatalysis Int. Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
3Green School, Korea University, Seoul, 136-713, Republic of Korea
4Petrochem. Research Chair, Dept. of Chem., King Saud Univ., Riyadh 11451, Saudi Arabia

*Corresponding author: skyoon@korea.ac.kr

†These authors contributed equally.
Figure S1. The optical 3D profiler measurement of the silica-alumina thin films coated at various spraying times.
Figure S2. The static water contact angles on the organosilane-coated alumina particles prepared with different particle weight percent. The electrospraying time was fixed at 30s for all cases.
Figure S3. Optical transparency of the organosilane-alumina coatings prepared with different particle weight percent. The electrospraying time was fixed at 30s for all cases.
Figure S4. The static water contact angles on the organosilane-coated alumina particles prepared with different UV irradiation times.
Figure S5. The static water contact angles on the organosilane-coated alumina particles prepared with different pH levels.