Supporting Information

Planar Perovskite Solar Cells with 15.75% Power Conversion Efficiency by Cathode and Anode Interfacial Modification

Min Qian, ‡a Meng Li, ‡b Xiao-Bo Shi,a Heng Ma,b Zhao-Kui Wang,*a and Liang-Sheng Liaoa

†aJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
bCollege of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007, China

‡These two authors contributed equally to the work.

Address all correspondence to the author. *Email: zkwang@suda.edu.cn; lsliao@suda.edu.cn
Fig. S1 (a) The extinction spectra of Ag-NPs solution. Calculated electric field profiles in Ag-NPs (0.05 wt%) doped PEDOT:PSS for (b) at 427 nm, (c) at 508 nm and (d) at 627 nm.
Fig. S2 (a) Absorption and (b) transmittance spectra of PEDOT:PSS films with and without Ag NPs (0.05 wt%).
Fig. S3 AFM top images of (a) pristine PEDOT:PSS, (b) Ag-NPs (0.01 wt%) doped PEDOT:PSS, (c) Ag-NPs (0.03 wt%) doped PEDOT:PSS, (d) Ag-NPs (0.05 wt%) doped PEDOT:PSS, (e) Ag-NPs (0.07 wt%) doped PEDOT:PSS films.
Fig. S4 AFM 3D images of (a) pristine PEDOT:PSS, (b) Ag-NPs (0.01 wt%) doped PEDOT:PSS, (c) Ag-NPs (0.03 wt%) doped PEDOT:PSS, (d) Ag-NPs (0.05 wt%) doped PEDOT:PSS, (e) Ag-NPs (0.07 wt%) doped PEDOT:PSS films.
Fig. S5 SEM images of CH$_3$NH$_3$PbI$_3$-xCl$_x$ crystal films on (a) PEDOT:PSS, (b) PEDOT:PSS-Ag NPs (0.01 wt%), (c) PEDOT:PSS-Ag NPs (0.03 wt%), (d) PEDOT:PSS-Ag NPs (0.05 wt%), and (e) PEDOT:PSS-Ag NPs (0.07 wt%).
Fig. S6 J-V curve of a device using reverse (1.1 V \rightarrow 0 V) and forward scan (0 V \rightarrow 1.1 V), respectively.