Supporting Information

Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering†

Jickson Joseph, a Anjali Paravannoor, a Shantikumar V. Nair, a Zhao Jun Han, b Kostya (Ken) Ostrikov b,c* and Avinash Balakrishnan a*

a Nanosolar Division, Amrita Centre for Nanosciences, AIMS, Ponekkara, Kochi 682041, India
E-mail: avinash.balakrishnan@gmail.com

b CSIRO Manufacturing Flagship, P.O. Box 218, Bradfield Road, Lindfield, NSW 2070, Australia
E-mail: kostya.ostrikov@csiro.au

c School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane QLD 4000, Australia

† Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015
Figure S1. (a) TEM images, (b) diameter size distribution, (c) XRD and (d) Raman spectra of the carbon nanobeads used as the precursors for synthesizing carbon sponges.
Figure S2. Schematic illustration showing the formation mechanism of graphitic carbon nanobeads obtained from camphor.
Figure S3. Raman spectra for samples-1, S-2 and S-3
Figure S4. CV curves of (a) sponges at different surfactant concentrations at a scan rate of 20 mV/s, and (b) S-3 at different scan rates from 1 to 20 mVs\(^{-1}\).
Figure S5. Typical FT-IR spectrum of the S-3 carbon sponge. The spectrum showed O-H stretching (3200-3400 cm$^{-1}$), C=O and C-O stretching (1629 cm$^{-1}$) and aromatic C=C stretching (1400-1600 cm$^{-1}$). The bands corresponding to anti-symmetric and symmetric stretching vibrations of =CH$_2$ were seen at 2925 and 2853 cm$^{-1}$, respectively.
Figure S6. (a) Constant current discharge curves of S-3 sample at different current densities. (b) Constant current discharge curves of S-3 at the 1st cycle and the 5000th cycle at a current density of 0.015 mA g⁻¹.
Figure S7. (a) Typical cyclic voltammetry curve at a scan rate of 100 mVs\(^{-1}\) and (b) galvanostatic discharge curve at a current density of 1.5 mA for the commercial AEC.
Table S1: Performance of various metrics of the devices made in this study with that of other literature reports.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Electrode materials</th>
<th>Phase at 120 Hz</th>
<th>f(Hz) at -45$^\circ$</th>
<th>τ_{RC} (μs)</th>
<th>τ_0 (μs)</th>
<th>C_A (μFcm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller et al.1</td>
<td>Vertical Graphene</td>
<td>82°</td>
<td>15000</td>
<td>200</td>
<td>NA</td>
<td><200</td>
</tr>
<tr>
<td>Sheng et al.2</td>
<td>Electrochemical reduced graphene oxide</td>
<td>85.5°</td>
<td>4200</td>
<td>1350</td>
<td>240</td>
<td><1000</td>
</tr>
<tr>
<td>Du and Pan3</td>
<td>Carbon nanotubes</td>
<td><75$^\circ$</td>
<td>636</td>
<td>NA</td>
<td>1500</td>
<td>NA</td>
</tr>
<tr>
<td>Lin et al.4</td>
<td>Graphene-Carbon nanotube carpets</td>
<td>81.5°</td>
<td>1343</td>
<td>195</td>
<td>820</td>
<td>2160</td>
</tr>
<tr>
<td>El-Kady et al.5</td>
<td>Laser Scribed Graphene</td>
<td><20$^\circ$</td>
<td>30</td>
<td>NA</td>
<td>NA</td>
<td>3670</td>
</tr>
<tr>
<td>Commercial* (Present study)</td>
<td>Aluminium electrolytic capacitor</td>
<td>85.5</td>
<td>20000</td>
<td>150</td>
<td>NA</td>
<td><100</td>
</tr>
<tr>
<td>Present Work</td>
<td>Camphoric carbon sponges</td>
<td>78°</td>
<td>4200</td>
<td>319</td>
<td>371</td>
<td>487</td>
</tr>
</tbody>
</table>

*As obtained from the manufacturer
References