Electronic Supplementary Information

Simple polyol synthesis of porous coral-like palladium-silver alloy nanostructures with enhanced electrocatalytic activity for glycerol oxidation reaction

Pei Song, Jiu-Ju Feng, Fei-Ying Guo, Ai-Jun Wang*

College of Chemistry and Life Science, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China

*Corresponding author: ajwang@zjnu.cn (A. J. Wang), Tel./Fax: +86 579 82282269.
Fig. S1. EDS spectra of (A) Pd$_{63}$Ag$_{37}$ nanocorals, Pd$_{50}$Ag$_{50}$ (B), and Pd$_{40}$Ag$_{60}$ (C).
Fig. S2. TEM images of Pd$_{50}$Ag$_{50}$ (A) and Pd$_{40}$Ag$_{60}$ (B).
Fig. S3. High-resolution Pd 3d XPS spectra of Pd$_{63}$Ag$_{37}$ nanocorals and commercial Pd black.

In text:

$\text{Pd}_{63}\text{Ag}_{37} \text{ANCs}$

Pd^0

Pd^{2+}

$\Delta E = -0.29 \text{ eV}$

Intensity / a.u.

Binding energy / eV

344 340 336 332

Pd black

Pd-Ag ANCs
Fig. S4. Schematic illustration for glycerol electrooxidation on coral-like Pd$_{63}$Ag$_{37}$ nanocatalyst in alkaline media (Dashed arrows correspond to a possible progress of the reaction).