Supporting Information For

High capacity and rate capability of 4d layered Li$_2$RuO$_3$ cathode utilized in the hybrid Na$^+$/Li$^+$ batteries

Ye Yaoa,b, Peilei Yanga, Xiaofei Biea,c, Chunzhong Wanga,b, Yingjin Weia, Gang Chena,b and Fei Dua,*

aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, People’s Republic of China

bState Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, People’s Republic of China

cElements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
Fig. S1 Galvanostatic charge-discharge profiles of Li$_2$RuO$_3$ in the LHC for the first three cycles in the voltage region of 2.0 - 4.5 V at the current density of 0.1 A g$^{-1}$ (a); its corresponding cycle performance and coulombic efficiency for 50 cycles (b).
Fig. S2 EDX spectra of Li$_2$RuO$_3$ after different cycling. Before cycling (a), 1st charge to 4.0V (b), 1st discharge to 2.0V (c), 2nd charge to 4.0V (d), 2nd discharge to 2.0V (e), 10th charge to 4.0V (f), 10th discharge to 2.0V (g), 11th charge to 4.0V (h), 11th discharge to 2.0V (i)
Fig. S3 Temperature dependence of resistivity for Li$_2$RuO$_3$.
Fig. S4 Cyclic voltammograms of Li$_2$RuO$_3$ in LHC at a scan rate of 0.1 mV s$^{-1}$ between 2.0 and 4.0 V vs. Li/Li$^+$