Electronic Supplementary Information (ESI) for

Green and facile synthesis of Fe₃O₄ and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries

Yucheng Dong,a,b Zhenyu Zhang,a Yang Xia,a Ying-San Chui,a Jong-Min Lee,b* Juan Antonio Zapien*a

a Center of super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, PR China

b School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore

E-mail: jmlee@ntu.edu.sg, apjazs@cityu.edu.hk
Figure S1. TEM image of Fe₃O₄/G nanocomposites.

Figure S2. Cyclic voltammograms characteristics of Fe₃O₄ electrode for the first five cycles in a voltage range of 0.01-3.0 V at a scanning rate of 0.2 mV s⁻¹.
Figure S3. Cycling performance of Fe$_3$O$_4$/G-2 nanocomposites at a current density of 200 mA g$^{-1}$ and for 100 cycles.

Figure S4. Cycling performance of pure Fe$_3$O$_4$ nanoparticles at a current density of 1000 mA g$^{-1}$ and for 100 cycles after activation for three cycles at 200 mA g$^{-1}$.