Supporting Information

The Role of Oxygen Vacancies in Improving the Performance of CoO as Bifunctional Cathode Catalyst for Rechargeable Li-O₂ Batteries

Rui Gaoᵃ, Lei Liuᵃ, Zhongbo Huᵃ, Peng Zhangᵇ, Xingzhong Caoᵇ, Baoyi Wangᵇ, Xiangfeng Liuᵃ*

ᵃCollege of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
ᵇKey Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences
Supporting Figures

Figure S1. The HRTEM images of CoO-A. The blurred areas (circled) and the rough edges of CoO nanocrystals indicate the presence of surface defects.

Figure S2. XPS spectra of CoO-A (a) and CoO-N (b). Two main peaks can be seen at ~780 eV and 796 eV, which can be attributed to Co (Co$^{2+}$) 2p3/2 and 2p1/2, respectively.
Figure S3 A, B) The full discharge-charge profiles of CoO-A (A) and CoO-N (B) at the current density of 200mA·g⁻¹. C, D) The full discharge-charge profiles of CoO-A (C) and CoO-N (D) at the current density of 400mA·g⁻¹.

Figure S4. TEM images of CoO-A and CoO-N under a low magnification. The particles of CoO-A show a serious aggregation.
Figure S5. The charge-only profile for batteries catalyzed by CoO-A and CoO-N at the current density of 200mA•g$^{-1}$. The ratio of carbon, CoO, binder and Li$_2$O$_2$ is 3:4:1:2