Improved Electrochemical Performance of Tin-sulfide Anodes for Sodium-ion Battery

Ying Ching Lua, Chuze Mac, Judith Alvaradoc, Nikolay Dimovb, Ying Shirley Mengc, Shigeto Okadab

a Department of Chemical Engineering, interdisciplinary graduate school of Engineering Sciences, Kyushu University, Fukuoka 819-0395, Japan

b Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan Tel: +81 92 583 7841; Fax: +81 92 583 7841 E-mail address: s-okada@cm.kyushu-u.ac.jp

c Department of NanoEngineering, University of California San Diego, La Jolla, CA 92037, USA

* Corresponding author Tel: +81 92 583 7841; Fax: +81 92 583 7841 E-mail address: s-okada@cm.kyushu-u.ac.jp (S. Okada)
Fig. S1 (a) Charge/discharge profiles and (b) cyclabilities of $\text{Na}_3\text{V}_2(\text{PO}_4)_3\text{F}$.
Fig. S2 Schematic scheme of the morphological changes after the sodiation/disodiation cycle.
Fig. S3 SEM images of (a), (b), SnS/C cut at 1.5 V; (c), (d) SnS/C cut at 2 V; (e), (f) SnS/G; (g), (h) SnS/G+C after 30 cycle.