Electronic Supplementary Information

Hybrids of Mo$_2$C nanoparticles anchored on graphene sheets as anode materials for high performance lithium-ion batteries

Beibei Wanga, Gang Wangb, Hui Wanga*

aKey Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials science, Northwest University, Xi’an 710069, PR China

bNational Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, PR China

*Corresponding author:

Tel.: +86 29 8836 3115

Fax: +86 29 8830 3798

E-mail address: huiwang@nwu.edu.cn (H. Wang)
Figure S1 XRD pattern of bulk Mo$_2$C.

Figure S2 SEM image of bulk Mo$_2$C.
Figure S3 (a) A low magnification SEM image of Mo$_2$C(52.6%)/GR hybrid. (b) A typical EDS spectrum of Mo$_2$C(52.6%)/GR hybrid. (c-d) C and Mo elemental mappings.
Figure S4 Nitrogen adsorption/desorption isotherm of pure GR and bulk Mo$_2$C.
Figure S5 Voltage profiles of (a) Mo$_2$C(38.7%)/GR and (b) Mo$_2$C(62.4%)/GR electrodes. CV curves of (c) Mo$_2$C(38.7%)/GR and (d) Mo$_2$C(62.4%)/GR electrodes at a scan rate of 0.1 mV s$^{-1}$ in the range of 0-3 V.
Figure S6 SEM image of Mo$_2$C(52.6%)/GR hybrid after 100 discharge/charge cycles at the current density of 100 mA g$^{-1}$.