Supplementary Information for

Growth-Controlled NiCo$_2$S$_4$ Nanosheet Arrays with Self-Decorated Nanoneedles for High-Performance Pseudocapacitors

Liyang Lina,b¶, Jianlin Liua,c¶, Tianmo Liub,*, Jinghua Haoa,b, Kemeng Jia, Rong Suna, Wen Zengb, Zhongchang Wanga

aAdvanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
bCollege of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
cDepartment of Applied Physics, Chongqing University, Chongqing 400044, China
Fig. S1 XRD pattern for the sample SS$_0$ powders scraped from Ni foam.
Fig. S2 TEM images and EDS spectra for an individual nanoneedles detached from the nanosheets in the NiCo$_2$S$_4$ sample SS$_0$.
Fig. S3 N₂ adsorption-desorption isotherm and pore size distribution curves of the NiCo₂S₄ sample SS₀ powders scraped from the substrate.
Figure S4

Fig. S4 SEM images of the NiCo$_2$S$_4$ sample synthesized by replacing NH$_4$F with NH$_4$Cl during the reaction.
Fig. S5 Phase degrees as a function of frequency for the electrode SS₀.
Fig. S6 (a) Schematic illustration of the sample SS₀ symmetric supercapacitor. (b) CV curves of the SS₀ device at various scan rates from 20 to 100 mVs⁻¹ measured between 0 and 1.0 V. (c) GCD curves at various current densities. (d) The specific capacitance as a function of current density. (e) Ragone plot showing energy and power densities of the symmetric supercapacitor. (f) Cycling stability of symmetric supercapacitor at a current density of 20 Ag⁻¹. The insets show the first and the last five GCD curves.