Supplementary Information

Enhanced Photoelectrochemical Water Oxidation on a BiVO₄ Photoanode Modified with Multi-Functional Layered Double Hydroxide Nanowalls

Wanhong He¹, Ruirui Wang¹, Lu Zhang¹, Jie Zhu², Xu Xiang^{1*}, Feng Li¹

¹ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 PR China

² Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, 213164 PR China

E-mail: xiangxu@mail.buct.edu.cn

EXPERIMENTAL SECTION

Chemicals

Bi(NO₃)₃·5H₂O, Co(NO₃)₃·6H₂O, Al(NO₃)₃·9H₂O, urea, NH₄F were purchased from Sinopharm Chemical Reagent (Beijing Co. Ltd.) All reagents were of analytical grade and were used without further purification. Deionized water was used throughout the experiments. FTO substrates (F: SnO₂, 15 m Ω ·cm⁻²) were received from Nippon Sheet Glass Co., Ltd.

Preparation of BiVO₄ photoanodes

The BiVO₄ photoanode was prepared by a modified method from a Bi metal precursor reported previously.¹ In a typical synthesis, a Bi metal film was first electrodeposited in an undivided cell on the electrochemical workstation (CHI 660C, CH Instrument Co. USA). The FTO conductive glass substrate was used as a working electrode. An Ag/AgCl electrode and Pt wire were used as the reference and counter electrodes, respectively. The electrolyte was prepared by dissolving Bi(NO₃)₃·5H₂O (1 mmol) into a solution containing H₂O (100 mL) and absolute ethanol (50 mL). The deposition was carried out by passing 8.35×10^{-2} C·cm⁻² at E = -0.6 V vs. Ag/AgCl. After electrodeposition, the Bi metal film was washed with ethanol and dried by blowing air.

Then the Bi metal film was converted into BiVO₄ by a chemical-thermol process. 200 μ L of 0.2 mol·L⁻¹ VO(acac)₂ dimethylsulfoxide (DMSO) solution were dipped onto the surface of the Bi metal film (geometric area = 2 cm²). The film was then heated at 450 °C for 2 hours in air. After calcination, the film was placed in a 1 mol·L⁻¹ NaOH solution for 30 min while stirring gentally to remove the residual V₂O₅. Finally, after soaking in the NaOH solution, the resulting BiVO₄ photoanode was obtained by washing with water thoroughly, and dried at 70 °C for 1 h.

Preparation of LDH@BiVO₄ composite photoanodes

The CoAl-LDH was grown on BiVO₄ photoanodes by a hydrothermal method. In

a typical run, Co(NO₃)₃·6H₂O (15 mmol·L⁻¹), Al(NO₃)₃·9H₂O (5 mmol·L⁻¹), urea (50 mmol·L⁻¹), and NH₄F (20 mmol·L⁻¹) were dissolved in deionized water to form a solution. This solution was transferred into a Teflon-lined stainless-steel autoclave and then one piece of BiVO₄ photoanode was placed at an angle against the wall of the Teflon liner with the conducting side facing down. Hydrothermal progress was conducted at 100 °C for 4 h in an electric oven. Finally, the resulting CoAl-LDH@BiVO₄ composite photoanodes were washed with water thoroughly, and dried at 50 °C for 1 h. The sample prepared by the same procedure without adding Al(NO₃)₃·9H₂O is named Co(OH)₂@BiVO₄ and the one prepared by using a FTO substrate instead of BiVO₄ photoanode is named CoAl-LDH/FTO.

Characterizations

Powder X-ray diffraction (XRD) patterns of all the samples were carried out using a graphite-filtered Cu K α radiation operating at 40 kV and 30 mA, λ = 0.15418 nm (Shimadzu XRD-6000 diffractometer).

X-ray photoelectron spectrometry (XPS) was recorded using Al K α radiation (Thermo VG ESCALAB MK II). The positions of all BEs were calibrated by using the C 1s line at 284.8 eV.

Scanning electron microscopy with an accelerating voltage of 20 kV (SEM, Zeiss SUPRA 55) was applied for detailed morphology analyses.

Solid-state UV-Vis absorption spectra were measured at room temperature by using a spectrometer equipped with an integrating sphere attachment (Shimadzu UV-3000) by using BaSO₄ as a background sample. The signal from the FTO conductive glass was subtracted.

Photoluminescence (PL) measurements were conducted by using a laser with an excitation of 325 nm at room temperature (Hitachi F-7000 spectrofluorometer).

TEM and EDS mappings were taken using microscopy (JEOL JEM-2010F) combined with an EDX (OxFord X-Max^N 80-TLE) spectroscopy. For TEM observations, the samples were scraped from the FTO substrate and ultrasonically dispersed in ethanol and then a drop of the suspension was deposited onto a carbon

coated Cu grid followed by the evaporation of solvent in air.

Electrochemical and PEC tests

All electrochemical and PEC measurements were carried out in an undivided cell on the electrochemical workstation (CHI 660C, CH Instrument Co. USA). The photoanodes were used as working electrodes. An Ag/AgCl electrode and Pt wire were used as the reference and counter electrodes, respectively. The electrolyte was $0.1 \cdot \text{mol} \cdot \text{L}^{-1}$ phosphate buffer solution (pH=7), unless otherwise stated. The scan rate in all the current-voltage curve measurement was 10 mV·s⁻¹. All potentials mentioned in this work were converted into that versus RHE (in V) according to equation (S1):

$$E_{RHE} = E_{Ag/AgCl} + E_{Ag/AgCl vs. NHE} + 0.059 pH$$
(S1)

unless otherwise noted. The $E_{Ag/AgCl vs NHE}$ in equation (S1) is 0.197 V at 20 °C. The light source used in the PEC experiments was a 300 W xenon lamp equipped with a AM 1.5G filter (illumination intensity: 100 mW·cm⁻²) and the light illuminated from the back side. The illumination area of all tested photoanodes was 2 cm².

Electrochemical Impedance Spectroscopy (EIS) was performed on the electrochemical workstation mentioned above at 1.23 V vs. RHE under illumination with a 0.1 V amplitude perturbation between 100000 and 0.1 Hz. The impedance data measured were fitted to an appropriate equivalent circuit by using ZView software (version 3.2c) to derive the resistance values.

PEC measurements with H_2O_2 as a hole scavenger were recorded in 0.1 mol·L⁻¹ phosphate buffer solution electrolyte (pH=7) with the addition of 0.1 mol·L⁻¹ H_2O_2 . The efficiency of substrate oxidation (ϕ_{ox}) by surface-reaching holes was calculated by equation (S2):

$$\phi_{\rm ox} = J^{\rm H2O}/J^{\rm H2O2} \tag{S2}$$

In which J^{H2O} is the photocurrent density obtained in the PEC water oxidation experiment, while the J^{H2O2} is the photocurrent density obtained in the PEC measurements with H_2O_2 as a hole scavenger (Fig. S6).²

Incident photon-to -current efficiency (IPCE) at each wavelength was measured using a 300 W Xe arc lamp motioned above. Monochromatic light was generated by using Oriel Cornerstone 130 monochromator and the output was measured with a photodiode detector. IPCE was measured at 1.23 V vs. RHE and obtained using equation (S3):

$$IPCE = (1240I)/(\lambda P_{light})$$
(S3)

where I is the photocurrent density $(mA \cdot cm^{-2})$; λ is the incident light wavelength (nm), and P_{light} (mW·cm⁻²) is the power density of monochromatic light at a specific wavelength.

The absorbed photon-to-current efficiency (APCE) was obtained by dividing the IPCE by the light harvesting efficiency (LHE) using equation (S4) and (S5):

$$APCE = IPCE/LHE$$
(S4)

LHE = $1-10^{-A(\lambda)}$ (A(λ) is the absorbance at wavelength λ) (S5)

Figure Captions

Figure S1 XRD pattern of Co(OH)₂@BiVO₄ photoanodes

Figure S2 Optical bandgap energy of BiVO₄.

Figure S3 XPS core level spectra of Co(OH)₂@BiVO₄ photoanode, (A) O1s and (B) Co2p

Figure S4 XPS core level spectra of CoAl-LDH@BiVO₄ and BiVO₄ photoanodes

(A) Bi4f and (B) V2p

Figure S5 SEM images of CoAl-LDH/FTO electrode, (A) Top-view and (B) Crosssectional observation

Figure S6 SEM images of Co(OH)2@BiVO4 photoanode

Figure S7 Enlarged image of current-voltage curves (in Fig. 3A) of the photoanodes

BiVO₄ (black), CoAl-LDH@BiVO₄ (red) and Co(OH)₂@BiVO₄ (green) under

illumination (solid line)

Figure S8 Current-voltage curves of CoAl-LDH grown directly on FTO under illumination (solid line) and in the dark (dash line)

Figure S9 Current-voltage curves of BiVO₄ under illumination in the presence of 0.1

M H₂O₂ as a hole scavenger in 0.1 M PBS electrolyte

Fig. S1 XRD pattern of Co(OH)2@BiVO4 photoanodes

Fig. S2 Optical bandgap energy of BiVO₄

Fig. S4 XPS core level spectra of CoAl-LDH@BiVO₄ and BiVO₄ photoanodes (A) Bi4f and (B) V2p

Fig. S5 SEM images of CoAl-LDH/FTO electrode, (A) Top-view and (B) Crosssectional observation.

Fig. S6 SEM images of Co(OH)₂@BiVO₄ photoanode

Figure S7 Enlarged image of current-voltage curves (in Fig. 3A) of the photoanodes BiVO₄ (black), CoAl-LDH@BiVO₄ (red) and Co(OH)₂@BiVO₄ (green) under illumination (solid line)

Fig. S8 Current-voltage curves of CoAl-LDH grown directly on FTO under illumination (solid line) and in the dark (dash line).

Fig. S9 Current-voltage curves of $BiVO_4$ under illumination in the presence of 0.1 M H_2O_2 as a hole scavenger in 0.1 M PBS electrolyte.

References

- D. Kang, Y. Park, J. C. Hill and K.-S. Choi, *The Journal of Physical Chemistry Letters*, 2014, 5, 2994-2999.
- 2. W. He, Y. Yang, L. Wang, J. Yang, X. Xiang, D. Yan and F. Li, *ChemSusChem*, 2015, **8**, 1568-1576.