Supporting information

A hybrid photoelectrode with plasmonic Au@TiO$_2$ nanoparticles for enhanced photoelectrochemical water splitting

Piangjai Peerakiatkhajohn,a Teera Butburee,a Jung-Ho Yun,a Hongjun Chen,a Ryan M. Richardsb and Lianzhou Wang *a

aNanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD,4072, Australia. E-mail: l.wang@uq.edu.au

bDepartment of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA and National Renewable Energy Laboratory, Golden, CO 80401, USA
Fig. S1 SEM images and inset digital images of (a) FTO/TiO$_2$-1 wt% Au@TiO$_2$ (b) FTO/Cu$_2$O photoelectrodes. (Scale bars: 100 nm)

Fig. S2 Light absorption spectra of (a) FTO/TiO$_2$-1 wt% Au@TiO$_2$ (b) FTO/ TiO$_2$-1 wt% Au@TiO$_2$/Al$_2$O$_3$/Cu$_2$O photoelectrodes with different sizes of Au metal cores.
Fig. S3 (A) Optical transmittance spectra and (B) Measured incident-photon-to-current efficiency (IPCE) spectra of (a) FTO/TiO$_2$-P25 and (b) FTO/TiO$_2$-1 wt% Au@TiO$_2$ (120nm) photoelectrodes.
Fig. S4 Amperometric I-t curves collected at -0.2 V vs. Ag/AgCl for (a) FTO/TiO$_2$-P25 and FTO/TiO$_2$-1 wt% Au@TiO$_2$ photoelectrodes with different particle size of Au metal core (b) 37 nm (c) 70 nm (d) 100 nm and (e) 120 nm under AM 1.5G,100 mWcm$^{-2}$.

Fig. S5 Amperometric I-t curves collected at -0.2 V vs. Ag/AgCl for electrodes (a) FTO/TiO$_2$-1 wt% Au@TiO$_2$/Cu$_2$O and (b) FTO/ TiO$_2$-1 wt% Au@TiO$_2$/Al$_2$O$_3$/Cu$_2$O with different particle sizes of 1 wt% Au@TiO$_2$ metal core under AM 1.5G,100 mWcm$^{-2}$.
Fig. S6 Dark cyclic voltammograms of the FTO/Cu₂O and FTO/TiO₂-1 wt % Au@TiO₂ (120 nm)/Al₂O₃/Cu₂O photoelectrodes before (a), (c) and after 1 h PEC stability measurement (b), (d) under AM 1.5 light irradiation in presence of 0.1 M Na₂SO₄ (Inset photos indicate FTO/Cu₂O (left) and FTO/TiO₂-1 wt% Au@TiO₂ (120 nm)/Al₂O₃/Cu₂O (right)).