Encapsulating Ca$_2$Ge$_7$O$_{16}$ nanowires within graphene sheets as anode materials for lithium-ion batteries

Wenwu Li, Di Chen* and Guozhen Shen*

a School of Mathematics and Physics, University of Science and Technology Beijing (USTB), Beijing 100083, China. E-mail: chendii@ustb.edu.cn.
b Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
c State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China. E-mail: gzshen@semi.ac.cn.

Figure S1. TG results of a) pure Ca$_2$Ge$_7$O$_{16}$ and b) Graphene.1
Figure S2. The screenshot of Figure 4b in our manuscript and the enlarged part indicating the [001] growth direction of Ca$_2$Ge$_7$O$_{16}$ within graphene sheets.
Figure S3. The low- and high-magnification HRTEM images of Ca$_2$Ge$_7$O$_{16}$ nanowires within graphene sheets, which indicates the [001] growth direction of Ca$_2$Ge$_7$O$_{16}$ nanowires within graphene sheets.
Figure S4. Cyclic voltammetry curves within the potential window of 0-3 V of the pristine Ca$_2$Ge$_7$O$_{16}$ (scan rate: 0.1 mV s$^{-1}$).

Figure S5. XRD pattern of the pristine Ca$_2$Ge$_7$O$_{16}$ nanowires without adding graphene.
Figure S6. FESEM images of the pristine Ca$_2$Ge$_7$O$_{16}$ nanowires.
Figure S7. Digital photo: the Ca$_2$Ge$_7$O$_{16}$ nanowires/graphene sheets electrode after 330 discharge/charge cycles.
Figure S8. TEM image and its corresponding EDX spectrum of the hybrid Ca$_2$Ge$_7$O$_{16}$ nanowires/graphene sheets electrode after 330 discharge/charge cycles at a current density of 500 mA g$^{-1}$.
Figure S9. The EIS result of Ca$_2$Ge$_7$O$_{16}$ anode after 50 cycles.

Reference: