Supporting Information for

Honeycomb in honeycomb carbon bubbles: excellent Li- and Na-storage performances

Gongzheng Yang¹#, Huawei Song¹#, Hao Cui¹,² and Chengxin Wang¹,²*

¹State key laboratory of optoelectronic materials and technologies, School of Physics Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China

²The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People’s Republic of China

These authors contributed equally to this work.

* Correspondence and requests for materials should be addressed to C. X. Wang. Tel & Fax: +86-20-84113901, E-mail: wchengx@mail.sysu.edu.cn
Figure S1. XRD patterns of the HHCBs.
Figure S2. SEM images of the Zn microspheres.
Figure S3. A representative TEM image shows the localized graphitization that probed distributing almost anywhere on the shells of hollow carbon bubbles.
Table S1. BET surface area (S_{BET}), total (V_{total}), micropore (V_{micro}) and mesopore (V_{meso}) pore volumes of the HHCBs.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET}^a (m²/g)</th>
<th>V_{total}^b (cm³/g)</th>
<th>V_{micro}^c (cm³/g)</th>
<th>V_{meso}^d (cm³/g)</th>
<th>D_{BJH}^e (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHCBs</td>
<td>780</td>
<td>1.53</td>
<td>0.32</td>
<td>1.08</td>
<td>8.7</td>
</tr>
</tbody>
</table>

a S_{BET}: surface area calculated by the BET method.

b V_{total}: total pore volume of pores.

c V_{micro}: pore volume of micropores calculated by the HK method.

d V_{meso}: pore volume of mesopores calculated by the BJH method.

e D_{BJH}: mesopore diameter calculated from adsorption branch of nitrogen isotherms using BJH method.
Figure S4. Low-magnification (A) and high resolution (B) TEM images of a broken hollow carbon bubble, in which one can clearly see the gaps, meso-, and micropores.