Electronic Supplementary Information

An Effect of Ag(I)-substitution at Cu sites in CuGaS$_2$ on Photocatalytic and Photoelectrochemical Properties for Solar Hydrogen Evolution

Hiroshi Kaga,a Yuko Tsutsui,a Akira Nagane,a Akihide Iwaseab and Akihiko Kudoab*

a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan

b Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

*Corresponding author: Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.

TEL: +81-3-5228-8267

FAX: +81-3-5261-4631

E-mail: a-kudo@rs.kagu.tus.ac.jp (A. Kudo)
Figure S1. Diffuse reflectance spectra of (a)-(d) CuGaS$_2$ and (e) Cu$_2$S. CuGaS$_2$ samples were prepared (a) without and with (b) 10%, (c) 20% and (d) 30% excess Ga$_2$S$_3$.
Figure S2. X-ray diffraction patterns of CuGaS$_2$ prepared (a) without and with (b) 10%, (c) 20% and (d) 30% excess Ga$_2$S$_3$. Closed triangle indicates a peak due to an impurity phase.
Figure S3. Diffuse reflectance spectra of (a), (b) AgGaS$_2$ and (c) Ag$_2$S. AgGaS$_2$ samples were prepared with (a) 10% and (b) 20% excess Ga$_2$S$_3$.
Figure S4. X-ray diffraction patterns of AgGaS$_2$ prepared with (a) 10% and (b) 20% excess Ga$_2$S$_3$.
Figure S5. Diffuse reflectance spectra of (a)-(d) Cu$_{0.8}$Ag$_{0.2}$GaS$_2$, (e) Cu$_2$S and (f) Ag$_2$S. Cu$_{0.8}$Ag$_{0.2}$GaS$_2$ samples were prepared (a) without and with (b) 5%, (c) 10% and (d) 20% excess Ga$_2$S$_3$.
Figure S6. X-ray diffraction patterns of Cu$_{0.8}$Ag$_{0.2}$GaS$_2$ prepared (a) without and with (b) 5%, (c) 10% and (d) 20% excess Ga$_2$S$_3$. Closed triangle indicates a peak due to an impurity phase.
Figure S7. XPS spectra of Ru in (a) a mixture of RuCl$_3$ and Cu$_{0.8}$Ag$_{0.2}$GaS$_2$, (b) Ru(1.0 wt%)-loaded Cu$_{0.8}$Ag$_{0.2}$GaS$_2$ powder and (c) Ru(0.5 wt%)-loaded Cu$_{0.8}$Ag$_{0.2}$GaS$_2$ electrode. The binding energy for each sample was calibrated using Cu2p.