Synthesis of Thin Film AuPd Alloys and their Investigation for Electrocatalytic CO₂ Reduction

Christopher Hahn†‡, David N. Abram†, Heine A. Hansen‡, Toru Hatsukade†, Ariel Jackson‡, Natalie C. Johnson§, Thomas R. Hellstern†, Kendra P. Kuhl‖, Etosha R. Cave’, Jeremy T. Feaster†, and Thomas F. Jaramillo†‡*

†Department of Chemical Engineering, Stanford University, California 94305

‡SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025

§Department of Geological and Environmental Sciences, Stanford University, California, 94305

‖Department of Chemistry, Stanford University, California, 94305

∥Department of Mechanical Engineering, Stanford University, California, 94305

*Address correspondence to jaramillo@stanford.edu
Figure S11. AFM images of AuPd thin films, revealing their RMS roughness values. The graphs below each AFM image correspond to a horizontal line scan across the sample.

Figure S12. EDS spectrum of AuPd thin film sample F. No Ti signal was detected within the AuPd layer.
Figure S13. AFM images of a AuPd thin film before and after electrochemical testing. Quantitative analysis confirms that the “Untested” and “Tested” regions have a similar RMS roughness values after testing, indicating that the sample retains a similar surface area.