Electronic Supplementary Information (ESI)

Structural influence of porous FeO\textsubscript{x} @ C nanorods on their performance as anodes of lithium-ion battery

Xueying Li, a Zhiyun Zhang, a Jing Li, a Yuanyuan Ma* a,b and Yongquan Qu* a,b

a Center for Applied Chemical Research, Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China, 710049
b MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an, 710049, China

*To whom correspondence should be addressed: yongquan@mail.xjtu.edu.cn; yyma@mail.xjtu.edu.cn

Fig. S1 Nitrogen adsorption-desorption isotherm loop and pore-size distribution curve calculated from the desorption branch by the BJH model: (a) FeO\textsubscript{x}-HY@C; (b) FeO\textsubscript{x}-AN@C.

Fig. S2 Thermogravimetric analysis (TGA) curves of FeO\textsubscript{x}-AN@C and FeO\textsubscript{x}-HY@C.
Fig. S3 Discharge capacities versus cycle number of FeO$_x$-HY and FeO$_x$-AN at the current density of 100 mA g$^{-1}$.