Rationally Engineered Surface Properties of Carbon Nanofibers on the Enhanced Supercapacitive Performance of Binary Metal Oxide

Ji Hoon Kim, Chang Hyo Kim, Hyeonseok Yoon, Je Sung Youn, Yong Chae Jung, Christopher E. Bunker, Yoong Ahm Kim, Kap Seung Yang

1 Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
2 Alan G. MacDiarmid Energy Research Institute and School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
3 Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudon-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 565-905, Republic of Korea
4 Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base, Ohio 45433-7103, USA

(*vak@jnu.ac.kr; **ksyang@jnu.ac.kr)
Figure S1 FE-SEM images of binary metal oxides-decorated carbon nanofibers as a function of the added amount of nickel and cobalt reagents.
Figure S2 SEM-EDX analysis results of binary metal oxides-decorated carbon nanofibers at different amount of nickel and cobalt reagents.
Figure S3 Raman spectra and factors of PAN- and PAN/pitch-derived carbon fibers, respectively.

<table>
<thead>
<tr>
<th>I.D.</th>
<th>D band (cm(^{-1}))</th>
<th>G-band (cm(^{-1}))</th>
<th>(I_D/I_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position</td>
<td>HWHM</td>
<td>Position</td>
</tr>
<tr>
<td>PAN</td>
<td>1345.81</td>
<td>110.73</td>
<td>1583.16</td>
</tr>
<tr>
<td>PAN/pitch</td>
<td>1351.36</td>
<td>105.82</td>
<td>1586.71</td>
</tr>
</tbody>
</table>
Figure S4 Detailed C 1s, O 1s and N 1s XPS spectra of PAN- and PAN/pitch-derived carbon nanofibers, respectively.
Figure S5 Wide-scan XPS spectra of pristine carbon nanofibers and metal oxide-decorated carbon nanofibers, respectively.