Hierarchically mesoporous carbon nanopetal based electrodes for flexible supercapacitors with super-long cyclic stability

Jayesh Cherusseria and Kamal K. Kara,b,*

aAdvanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India.
bAdvanced Nanoengineering Materials Laboratory Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India.

*Corresponding Author. Tel: +91-512-2597687, E-mail: kamalkk@iitk.ac.in (Kamal K. Kar)

Electronic Supplementary Information

List of Contents

Supplementary Tables:

Table S1. Comparison of gravimetric capacitances achieved by the various carbon nanomaterials based supercapacitors.

Supplementary Methods:

Method S1. Calculation of ionic conductivity of CNPs/UCF supercapacitor electrodes.
Method S2. Calculation of discharge capacitance of CNPs/UCF supercapacitor.
Method S3. Calculation of areal capacitance of CNPs/UCF supercapacitor.
Method S5. Calculation of volume specific capacitance of CNPs/UCF supercapacitor
Method S6. Calculation of volume specific energy density of CNPs/UCF supercapacitor.

Method S7. Calculation of volume specific power density of CNPs/UCF supercapacitor.

Method S8. Calculation of gravimetric capacitance of CNPs/UCF supercapacitor.

Method S9: Calculation of gravimetric energy density of CNPs/UCF supercapacitor.

Supplementary Figures:

Fig. S1. Assembly of CNPs/UCF supercapacitor cell by using CNPs/UCF electrode-cum-current collectors.

Fig. S2. SEM image of nickel-coated UCFs.

Fig. S3. EDS spectra of oxidized, nickel-coated UCFs.

Fig. S4. Plot of variations in the volumetric capacitance of CNPs/UCF supercapacitor cell at different current densities.

Fig. S5. Digital image of the two electrode cell set-up used for the testing of CNPs/UCF supercapacitor at various bending angles.

Fig. S6. Plot of percentage retention in the areal capacitance of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S7. Plot of percentage retention in the gravimetric capacitance of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S8. Plot of variation in the volumetric capacitance of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S9. Plots of percentage retentions in the volumetric and volume specific capacitances of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S10. Plot of variation in the gravimetric energy density of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S11. Plots of percentage retentions in the volume specific and gravimetric energy densities of CNPs/UCF supercapacitor cell at different bending angles.
Fig. S12. Plots of percentage retentions in the volume specific and gravimetric power densities of CNPs/UCF supercapacitor cell at different bending angles.

Table S1. Comparison of gravimetric capacitances achieved by the various carbon nanomaterials based supercapacitors.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Electrode Material/s</th>
<th>Electrolyte</th>
<th>$C_{\text{sc,sp,m}}$ (F/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[S2]</td>
<td>SWNTs</td>
<td>1 M NaCl (aqueous)</td>
<td>25-30</td>
</tr>
<tr>
<td></td>
<td>MWNTs</td>
<td>1 M NaCl (aqueous)</td>
<td>6-10</td>
</tr>
<tr>
<td>[S3]</td>
<td>MWNTs</td>
<td>1 M LiPF$_6$ (EC-DEC)</td>
<td>35</td>
</tr>
<tr>
<td>[S4]</td>
<td>Normal CNTs</td>
<td>1 M LiClO$_4$ (EC-DEC)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Activated CNTs</td>
<td>1 M LiClO$_4$ (EC-DEC)</td>
<td>50</td>
</tr>
<tr>
<td>[S5]</td>
<td>CO$_2$-oxidized CNTs</td>
<td>--</td>
<td>47</td>
</tr>
<tr>
<td>[S6]</td>
<td>MWNTs</td>
<td>6 N KOH</td>
<td>21</td>
</tr>
<tr>
<td>[S7]</td>
<td>MWNTs</td>
<td>1 M H$_2$SO$_4$</td>
<td>25.4</td>
</tr>
<tr>
<td>[S8]</td>
<td>SWNTs</td>
<td>6 M KOH</td>
<td>40</td>
</tr>
<tr>
<td>[S9]</td>
<td>Pristine CNTs</td>
<td>Aprotic electrolyte</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td>Pristine CNTs</td>
<td>Protic electrolyte</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>Cup-stacked CNTs</td>
<td>Aprotic electrolyte</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>Cup-stacked CNTs</td>
<td>Protic electrolyte</td>
<td>28.4</td>
</tr>
<tr>
<td>[S10]</td>
<td>Pristine DWNTs</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Pristine DWNTs</td>
<td>1 M Et$_4$NBF$_4$/PC</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>DWNT-HNO$_3$</td>
<td>0.5 M H$_2$SO$_4$</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>DWNT-HNO$_3$</td>
<td>1 M Et$_4$NBF$_4$/PC</td>
<td>38</td>
</tr>
<tr>
<td>[S11]</td>
<td>MWNTs grown on metals</td>
<td>6 M KOH</td>
<td>10.75-21.57</td>
</tr>
<tr>
<td>[S12]</td>
<td>CNTs grown on Ni-foam</td>
<td>6 M KOH</td>
<td>25</td>
</tr>
<tr>
<td>[S13]</td>
<td>SWNT film</td>
<td>1 M LiClO$_4$ (EC-DEC-DMC)</td>
<td>35</td>
</tr>
<tr>
<td>[S14]</td>
<td>MWNTs</td>
<td>38 wt% H$_2$SO$_4$</td>
<td>113</td>
</tr>
<tr>
<td>[S15]</td>
<td>SWNTs</td>
<td>7.5 N KOH</td>
<td>180</td>
</tr>
</tbody>
</table>
Method S1. Calculation of ionic conductivity of CNPs/UCF electrodes.

The ionic conductivity of the supercapacitor electrodes is calculated by using the equation

$$\sigma = \frac{T}{R_b \times A}$$

Where σ is the ionic conductivity in S/cm, T is the total thickness of the supercapacitor cell (in cm), R_b is the bulk electrolyte resistance (in Ω), and A is the geometrical area of electrodes (in cm2).

Method S2: Calculation of discharge capacitance of CNPs/UCF supercapacitor.

The discharge capacitance of the supercapacitor is calculated by using equation

$$C_{sc} = \frac{I t_{dis}}{\Delta E}$$

Where, C_{sc} is the discharge capacitance of the supercapacitor, I is the charging current, t_{dis} is the discharging time, and ΔE is the operating potential window.

Method S3: Calculation of areal capacitance of CNPs/UCF supercapacitor.

The areal capacitance of the supercapacitor is calculated by using the equation

$$C_{sc, A} = \frac{C_{sc}}{A_{sc}}$$

Where, $C_{sc, A}$ is the areal capacitance of the supercapacitor and A_{sc} is the total geometric area of two supercapacitor electrodes (i.e., two times the area of single electrode).

Method S4: Calculation of volumetric capacitance of CNPs/UCF supercapacitor.

The volumetric capacitance of the supercapacitor is calculated by using the equation

$$C_{sc, V} = \frac{C_{sc}}{V_{sc}}$$

| Present Work | CNPs synthesized on UCF | 5 M KOH | 220 (at 2.77mA/cm2) | 154 (at 16.66mA/cm2) |
Where, $C_{sc,v}$ is the volumetric capacitance of the supercapacitor and V_{sc} is the total volume of the supercapacitor (total volume of two supercapacitor electrodes + volume of the separator with electrolyte).

Method S5: Calculation of volume specific capacitance of CNPs/UCF supercapacitor.

The volume specific capacitance of the supercapacitor is calculated [S1] by using the equation

$$C_{sc,sp,v} = 4 \times \frac{C_{sc}}{V_{el}}$$

Where, $C_{sc,sp,v}$ is the volume specific capacitance of the supercapacitor, C_{sc} is the discharge capacitance of the supercapacitor, V_{el} is the total volume of two supercapacitor electrodes (the volumes of separator with electrolyte is not considered).

Method S6: Calculation of volume specific energy density of CNPs/UCF supercapacitor.

The volume specific energy density of the supercapacitor is calculated by using the equation

$$E_{sc,sp,v} = \frac{C_{sc,sp,v} \times (\Delta E)^2}{2 \times 3600}$$

Where $E_{sc,sp,v}$ is the volume specific energy density and all other variables as defined above.

Method S7: Calculation of volume specific power density of CNPs/UCF supercapacitor.

The volume specific power density of the supercapacitor is calculated by using the equation

$$P_{sc,sp,v} = \frac{E_{sc,sp,v} \times 3600}{t_{dis}}$$

Where $P_{sc,sp,v}$ is the volume specific power density and all other variables are defined above.

Method S8: Calculation of gravimetric capacitance of CNPs/UCF supercapacitor.

The gravimetric capacitance of the supercapacitor is calculated by using the equation

$$C_{sc,sp,m} = \frac{I \times t_{dis}}{M \times (\Delta E)} = \frac{C_{sc}}{M}$$

Where, ‘M’ is the total mass of CNPs in the two electrodes of the supercapacitor (excluding the mass of UCFs, separator, and electrolyte), and other variables are discussed above.
Supplementary Figures:

Fig. S1. Assembly of CNPs/UCF supercapacitor cell by using CNPs/UCF electrode-cum-current collectors.
Fig. S2. SEM image of nickel-coated UCFs.

Fig. S3. EDS spectra of oxidized, nickel-coated UCFs.
Fig. S4. Plot of variations in the volumetric capacitance of CNPs/UCF supercapacitor cell at different current densities.

![Plot of variations in the volumetric capacitance of CNPs/UCF supercapacitor cell at different current densities.](image)

Fig. S5. Digital image of the two electrode cell set-up used for the testing of CNPs/UCF supercapacitor at various bending angles.

![Digital image of the two electrode cell set-up used for the testing of CNPs/UCF supercapacitor at various bending angles.](image)
Fig. S6. Plot of percentage retention in the areal capacitance of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S7. Plot of percentage retention in the gravimetric capacitance of CNPs/UCF supercapacitor cell at different bending angles.
Fig. S8. Plot of variation in the volumetric capacitance of CNPs/UCF supercapacitor cell at different bending angles.

Fig. S9. Plots of percentage retentions in the volumetric and volume specific capacitances of CNPs/UCF supercapacitor cell at different bending angles.
Fig. S10. Plot of variation in the gravimetric energy density of CNPs/UCF supercapacitor cell at different bending angles.

![Gravimetric Energy Density Plot](image1)

Fig. S11. Plots of percentage retentions in the volume specific and gravimetric energy densities of CNPs/UCF supercapacitor cell at different bending angles.

![Volume Specific and Gravimetric Density Retention Plots](image2)
Fig. S12. Plots of percentage retentions in the volume specific and gravimetric power densities of CNPs/UCF supercapacitor cell at different bending angles.

References:

