Supporting Information for

Nanostructured CuP$_2$/C Composites as High-Performance Anode Materials for Sodium Ion Batteries

Feipeng Zhao, Na Han, Wenjing Huang, Jiaojiao Li, Hualin Ye, Fengjiao Chen, Yanguang Li*

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China

E-mail: yanguang@suda.edu.cn

Figure S1. XRD pattern of Cu$_3$P prepared with a starting Cu to P ratio of 3 using HEBM.
Figure S2. (a) Cu 2p, (b) P 2p and (c) C 1s XPS spectra of pure CuP$_2$ and CuP$_2$/C composites.

Figure S3. SEM images of (a) Cu and (b) P precursor powders for HEBM.

Figure S4. XRD patterns of electrode materials in different charge and discharge states in comparison with the initial state.
Figure S5. TEM images of electrode materials at (a,b) the fully discharged state and (c,d) the fully charged state.

Figure S6. Rate capability of CuP$_2$/C electrode materials under fixed discharge current density (50 mA/g) and varying charge current densities as indicated.
Figure S7. Electrochemical impedance spectroscopy (EIS) analysis of CuP$_2$ and CuP$_2$/C at both the as-assembled state and the 1st recharge back to 2.5 V.

Figure S8. Cycling performances of CuP$_2$/C composites with different CuP$_2$ to carbon black ratios.
Figure S9. (a) Long-term cycling performance of CuP$_2$/C composites; (b) SEM image, (c) STEM image and (d-f) corresponding EDS elemental mapping of the electrode material after 70 charge/discharge cycles.