Electronic Supplementary Information

Turning periodic mesoporous organosilicas selective to CO₂/CH₄ separation: deposition of aluminum oxide by atomic layer deposition

Mirtha A. O. Lourenço, Ricardo M. Silva, Rui F. Silva, Nicola Pinna, Stephane Pronier, João Pires, José R. B. Gomes, Moisés L. Pinto, Paula Ferreira

a CICECO, Department of Materials & Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
b Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
c Service Measures Physiques (IC2MP), University of Poitiers, CNRS, UMR7285, 4 rue Michel Brunet, 86022 Poitiers, France.
d Center of chemistry and biochemistry, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
e CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
f CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n° 1, 1049-001 Lisboa, Portugal.
1. **Experimental - characterization**

Morphology and composition of the Al-PMO composites were further analyzed by scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS) using a SU-70 (Hitachi) microscope with a Bruker silicon drift detector. The sample for scanning transmission electron microscopy (STEM) measurements was prepared by deposition a drop of a diluted ethanol dispersion of the material (previously sonicated for a few seconds) on a holey carbon grid; the solvent was allowed to dry in air.

Powder X-ray diffraction (PXRD) data were recorded using a Phillips X’Pert MPD diffractometer with Cu-Kα radiation.

TEM images were recorded in transmission electron microscopy Jeol 2100 UHR equipped with analysis EDX Si(Li) and camera CCD Gatan ultrascan (2k x 2k). For preparation samples are included into a polymeric resin and cut by ultramicrotomy with a diamond knife to have a thickness between 50nm and 70nm. Cut sections are deposited on grids with holey carbon film.

Fourier transform infrared (FTIR) spectra were performed in a FTIR Bruker Tensor 27 instrument with a Golden Gate ATR (Attenuated Total Reflectance). The PMO powders were dehydrated during 24h at 100 ºC before FTIR analysis. The FTIR spectra were collected in absorbance mode.

Nitrogen adsorption-desorption isotherms were collected at -196 ºC by a Gemini V 2.00 instrument model 2380. All PMOs materials were dehydrated overnight at 150 ºC and 1024 mbar. Then the materials were cooled to room temperature before adsorption.

13C, 29Si and 27Al spectra were recorded at 100.62, 79.49 and 100.62 MHz, respectively, using a Bruker Avance III 400 spectrometer operating at 9.4 T. The spectra were quoted in ppm from trimethylsilane. 13C cross-polarization magic-angle spinning (CP MAS) NMR spectra were collected using a 4 µs 1H 90º pulse, 1 ms contact time, a spinning rate of 15 kHz and 4 s recycle delay. 29Si CP MAS NMR spectra were acquired with a 4 µs 1H 90º pulse, 8 ms contact time, a spinning rate of 5 kHz and 5 s recycle delay. 27Al MAS NMR spectra were recorded employing a 10º flip angle pulse; a spinning rate of 14 kHz and 1 s recycle delays.
Thermogravimetric analysis (TGA) was made on a Shimadzu TGA-50 instrument with a heating rate of 5 °C min⁻¹ in air.

2. Characterization PMO materials

Figure S1. SEM and EDS mapping images of Al-PMO#10 (a), (b), and (c)), Al-PMO#20 (d), (e), and (f)) and Al-PMO#100 (g), (h), and (i)).
Figure S2. -196 °C N₂ adsorption desorption isotherms of PMO (□), Al-PMO#2 (+), Al-PMO#10 (○), Al-PMO#20 (Δ), Al-PMO#50 (◊) and Al-PMO#100 (x). Empty symbols correspond to the adsorption and fully symbols correspond to the desorption.
Figure S3. TEM images and EDS analyses of Al-PMO#2, Al-PMO#50 and Al-PMO#100 composites.
Figure S4. FTIR (ATR) spectra of PMO, Al-PMO#10, Al-PMO#20, Al-PMO#50 and Al-PMO#100 in the range of a) 350-1750 cm\(^{-1}\) b) 2350-4000 cm\(^{-1}\).

Figure S5. \(^{29}\)Si CP MAS NMR spectra of Al-PMO#50.
Table S1. Percentage of T^m silanol species calculated from the fits of the 29Si MAS NMR spectra.

<table>
<thead>
<tr>
<th></th>
<th>% T^1</th>
<th>% T^2</th>
<th>% T^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMO</td>
<td>3.89</td>
<td>37.31</td>
<td>58.80</td>
</tr>
<tr>
<td>Al-PMO#50</td>
<td>3.38</td>
<td>33.10</td>
<td>63.52</td>
</tr>
</tbody>
</table>

Figure S6. 13C CP MAS NMR spectra of Al-PMO#50.

Figure S7. TGA of Al-PMO#50 composite.
Figure S8. Carbon dioxide adsorption isotherms at 25°C on the PMO, PMO#2 and PMO#50, expressed by surface area (A_{BET}) of the material.

Figure S9. Adsorbed amounts of the CO$_2$/CH$_4$ mixture as a function of the CH$_4$ molar fraction in the gas phase, at 500 kPa and 25°C, for PMO samples.
Figure S10. 27Al MAS NMR spectrum of PMO+Al$_2$O$_3$-a material mixture.

Figure S11. a) Carbon dioxide and methane adsorption isotherms at 25ºC on the Al-PMO#50 and PMO+Al$_2$O$_3$-a. The lines represent the fitting of the virial equation. b) Average selectivity for the CO$_2$/CH$_4$ separation on the Al-PMO#50 and PMO+Al$_2$O$_3$-a.
Figure S12. a) Isothermal (25°C), isobaric (500 kPa) x_y phase diagrams of the CO$_2$/CH$_4$ mixtures on the PMO+Al$_2$O$_3$. y_{CH_4} is the molar faction of methane in the gas phase; x_{CH_4} is the molar faction of methane in the adsorbed phase and b) adsorbed amounts of the CO$_2$/CH$_4$ mixture as a function of the CH$_4$ molar fraction in the gas phase, at 500 kPa and 25°C, for PMO+Al$_2$O$_3$ a sample.