Hybrid Cathode Architectures for Lithium Batteries based on TiS$_2$ and Sulfur

Lin Ma,a Shuya Wei,b Houlong Zhuang,a Kenville Hendrickson,b Richard Hennig,a and Lynden A. Archera,b

Supporting information

aDepartment of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA.

bSchool of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA. Email: laa25@cornell.edu

Electronic supporting information (ESI) available.
Figure S1. (a) Cycling performance of TiS$_2$, sulfur and TiS$_2$/S$_8$ hybrid electrode at 0.1C. Performance of (b) TiS$_2$ electrode, (c) sulfur electrode (d) TiS$_2$/S$_8$ hybrid cycled at various current rates (0.1C, 0.2C, 0.5C, 0.1C, 1C, 0.1C, 0.2C).

<table>
<thead>
<tr>
<th>Cathode materials</th>
<th>First discharge capacity (mAh/g)*</th>
<th>Capacity after 30 cycles (mAh/g)*</th>
<th>Degradation rate per cycle (%)</th>
<th>Utilization rate(%)$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% Sulfur cathode</td>
<td>603</td>
<td>189</td>
<td>2.3</td>
<td>36</td>
</tr>
<tr>
<td>50% Sulfur + 30%TiS$_2$ cathode</td>
<td>950</td>
<td>600</td>
<td>1.2</td>
<td>84</td>
</tr>
</tbody>
</table>

Table S1. Comparison of the performance of different cathode materials.

* The capacity is calculated based on the weight of the total active materials.

+ Utilization rate = Experimental Capacity/Theoretical Capacity.
Figure S2. (a) SEM of Ti metal foam. Scale bar= 20 µm. (b) XRD analysis of Ti metal foam.

Figure S3. XRD analysis of the TGA products.
Figure S4. SEM images of (a)TSF5; (b)TSF10; (c) TSF15. Scale bar=20 µm.

Figure S5. (a) Comparison of Raman spectra of 1. Sulfur powder. 2. TiS₂ powder. 3. TSF5. 4. TSF10. 5. TSF15. (b) Zoom-in spectra of sulfur.
Figure S6. XRD analysis of the discharge products of (a) Sulfur electrode. (b) TiS$_2$ electrode. (c) TSF15.

Method 1

Method to determine content of Sulfur, TiS$_2$ and Ti metal content using Thermogravimetric analysis (TGA).
1. Ti metal
2. TiS$_2$
3. TSF5
4. TSF10
5. TSF15

Use curve4 as an example. Set the percentage% of sulfur, TiS$_2$ and Ti as x, y, z respectively.

\[x+y+z=100 \]

\[y+z=80 \]

\[y \times 79.866(\text{TiO}_2)/111.997(\text{TiS}_2)+z=59 \]

\[x=20; \]

\[y=73; \]

\[z=7. \]
Method 2

Estamination of the capacity based on the mass of the whole electrode

The areal weight with 4.7mg/cm2 of Al current collector is used here to calculate S wt% in total cathode weight.

For example, in reference 6, sulfur loading is 1.13 mg/cm2, percentage of sulfur in the electrode slurry is 59 wt% and a capacity ~ 1100 mAh/g is obtained in 20th cycle.

Capacity based on the whole electrode =

$$1100 \text{mAh/g} \times \frac{1.13 \text{mg/cm}^2}{21.13 \text{mg/cm}^2} / 0.59 + \frac{4.7 \text{mg/cm}^2}{2} = 181 \text{mAh/g}$$