Supplementary information

Use of a protic salt for the formation of liquid-crystalline proton-conductive complexes with mesomorphic diols

Akihiro Yamashitaa, Masafumi Yoshio,*a Bartolome Soberats,ab Hiroyuki Ohnoc and Takashi Kato*ab

aDepartment of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
bCREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
cDepartment of Biotechnology, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan.

*Corresponding author. E-mail: kato@chiral.t.u-tokyo.ac.jp, yoshio@chembio.t.u-tokyo.ac.jp

Table of contents:

1. 1H NMR spectra of protic salt 3

2. XRD diffraction study of compound 1

3 The intercolumnar distance (a) and average number of molecules per cross-sectional slice of the columns (n)

4. 1H NMR spectra of 1,3, and the mixture 1/3(50)

5. 13C NMR spectra of 1, 2, 3, 1/3(50), and 2/3(50)

6. IR spectra of single compounds 1-3 and the mixtures

7. POM images of the uniaxially oriented 2/3(20) in the Col$_h$ phase

8. Vogel-Tamman-Fulcher plots of the ionic conductivities for mixtures 1/3(x) and 2/3(x)

9. DSC thermograms of 1, 2 and their mixtures with 3

10. Wide-angle XRD diffraction patterns of the mixtures
1. 1H NMR spectra of protic salt 3

Protic salt 3 was identified by 1H NMR spectroscopy of the CDCl$_3$ (Fig. S3) and DMSO-d$_6$ solution (Fig. S4). The imidazole NH proton and sulfonic acid proton are not observed for the CDCl$_3$ solution (Fig. S3). In contrast, the DMSO-d$_6$ solution indicates a broad signal at 14.3 ppm, which is attributable to the imidazolium NH proton.

Figure S1. 1H NMR spectrum of protic salt 3 in CDCl$_3$.

Figure S2. 1H NMR spectrum of protic salt 3 in DMSO-d$_6$.
2. XRD diffraction study of compound 1

The self-assembled structure of compound 1 was determined by XRD measurements. The wide-angle XRD pattern of 1 at 70 °C shows four peaks corresponding to the diffraction from the (100), (110), (200) and (300) planes of the hexagonal columnar structure. The two-dimensional transmission image of small-angle XRD pattern of 1 aligned homeotropically on a polyimide film at 70 °C shows diffraction spots with a six fold symmetry from the (100) plane.

Figure S3. (a) Wide-angle and (b) small-angle XRD patterns of compound 1 in the columnar phase at 70 °C.

3. The intercolumnar distance (a) and average number of molecules per cross-sectional slice of the columns (n)

Figure S4. Schematic illustration of the hexagonal columnar lattice.
The intercolumnar distance \((a) \) of the single diol compound and the mixtures containing protic salt 3 is estimated as follows. The value of \(d_{100} \) is obtained from the wide-angle XRD patterns.

\[
a = \frac{2 \times d_{100}}{\sqrt{3}}
\]

The volume of the cross-sectional slice of the column \((V)\) is described as follows,

\[
V = A \times B \times \frac{1}{2} \times 12 \times h = \frac{\sqrt{3}}{2} a^2 h
\]

where \(h \) is the average spacing between benzene rings or molten alkyl chains in the direction of the column axis. The \(h \) value is estimated to be 4.5-4.6 Å from the halo around 20 ° in the wide-angle XRD patterns.

The density \((\rho)\) of the material is described as follows:

\[
\rho = \frac{n_1 M_1 + n_3 M_3}{\frac{\sqrt{3}}{2} a^2 h} = \frac{n_1 M_1 + n_3 M_3}{\sqrt{3} N_A a^2 h} = \frac{2 n_1 M_1 + n_3 M_3}{\sqrt{3} N_A a^2 h}
\]

where \(n_1 \) and \(n_3 \) are the average number of molecules of compound 1 and protic salt 3 per cross-sectional slice of the columns respectively, \(M_1 \) and \(M_3 \) are the molecular weight of 1 and 3 \((M_1 = 564.9 \text{ and } M_3 = 226.3)\). \(N_A \) is Avogadro’s number \((6.02 \times 10^{23} \text{ mol}^{-1})\).

Therefore, \(n_1 \) and \(n_3 \) can be obtained by solving the following simultaneous equations.

\[
\begin{align*}
\left\{ \begin{array}{l}
 n_1 : n_3 = (100 - x) : x \\
 n_1 M_1 + n_3 M_3 = \frac{\sqrt{3}}{2} N_A a^2 h \rho
\end{array} \right.
\]

where \(x \) is the mole% of 3 in the mixtures. The density of the diol compounds and the mixtures containing 3 is assumed to be 1.0 g cm\(^{-3}\).

The intercolumnar distance \((a) \) of the mixtures 1/3(x) and 2/3(x) up to \(x = 40 \) are shown in Figure S5. The average number of diol molecules 1 \((n_1)\) and 2 \((n_2)\) and protic salt \((n_3)\) in the mixtures per cross-sectional slice of the columns are shown in Figure S6 and S7.
Figure S5. Intercolumnar distance of the mixtures in the Col₅ phase.

Figure S6. Average number of diol compound 1 (n_1: ●) and protic salt 3 (n_3: ■) per cross-sectional slice of the columns.
Figure S7. Average number of diol compound 2 (n_2: ●) and protic salt 3 (n_3: ■) per cross-sectional slice of the columns.
4. 1H NMR spectra of 1,3, and the mixture 1/3(50)

The interactions of diol compound 1 and protic salt 3 were examined by 1H NMR. The downfield shift of C(2) proton (H13) of imidazolium cation of 3 was observed.

Figure S8. 1H NMR spectra of diol 1, protic salt 3, and the equimolar mixture of 1 and 3.
5. 13C NMR spectra of 1, 2, 3, 1/3(50), and 2/3(50)

The interactions of diol compound and protic salt were examined by 13C NMR. The carbonyl carbons of 1 and 2 appear at 167.2 ppm 169.2 ppm, respectively. No shifts of the carbonyl carbon are observed for the mixture s 1/3(50) and 2/3(50). These results suggest the carbonyl groups are not involved in specific interactions with protic salt 3.

![Figure S9. 13C NMR spectra of single compound 1 and 3 and equimolar mixture 1/3.](image)

![Figure S10. 13C NMR spectra of single compound 2 and 3 and equimolar mixture 2/3.](image)
6. IR spectra of single compounds 1-3 and the mixtures

The interactions of diol compounds 1, 2 and protic salt 3 were examined by FT-IR measurements. The IR spectra of single compounds 1, 2, and 3 are shown in Figure S11-S13, respectively. Figures S14-S17 indicate the IR spectra of the mixtures of 1, 2 with 3. The IR spectra of the mixtures containing 3 at the different concentration were also recorded (Fig. S18).

![Chemical structure of compound 1](image)

Figure S11. (a) Temperature dependent FT-IR spectra of compound 1 and (b) its enlarged view.
Figure S12. (a) Temperature dependent FT-IR spectra of compound 2 and (b) its enlarged view.

Figure S13. FT-IR spectra of protic salt 3 at room temperature.
For single compounds 1 and 2, the O-H stretching band around 3400 cm\(^{-1}\) is shifted to higher wavenumber as the temperature rises. The N-H and C=O bands are also slightly shifted to higher wavenumber.

Figure S14. (a) Temperature dependent FT-IR spectra of the mixture 1/3(30) and (b) its enlarged view.

Figure S15. (a) Temperature dependent FT-IR spectra of the mixture 2/3(30) and (b) its enlarged view.
Figure S16. (a) Temperature dependent FT-IR spectra of the mixture 1/3(50) and (b) its enlarged view.

Figure S17. (a) Temperature dependent FT-IR spectra of the mixture 2/3(50) and (b) its enlarged view.
Figure S18. FT-IR spectra of (a) the mixtures of compound 1 and protic salt 3 and (b) the mixtures of compound 2 and protic salt 3 at 70 °C.
7. POM images of the uniaxially oriented 2/3(20) in the Colₖ phase

A uniaxially parallel orientation of the columns of the mixture 2/3(20) has been achieved between the comb-shaped gold electrodes on a glass substrate by the application of mechanical shear force to the sample at 120 °C.

Figure S19. POM images of the uniaxially oriented mixture 2/3(20) under a crossed Nicols condition. (a) The shearing direction is parallel to the polarizer axis. (b) The sample of (a) is rotated by 45 °. Arrows indicate the directions of the shear force (S), analyzer (A) and polarizer (P) axes.
8. Vogel-Tamman-Fulcher plots of the ionic conductivities for mixtures 1/3(x) and 2/3(x)

The temperature dependence of the ionic conductivities for the mixtures 1/3(x) and 2/3(x), where x denotes the mole% of 3, are fitted by the Vogel-Tamman-Fulcher (VTF) equation:

\[\sigma = \frac{A}{\sqrt{T}} \exp \left(\frac{-B}{T - T_0} \right) \]

where \(\sigma \) and T are the ionic conductivity and the absolute temperature. A, B and \(T_0 \) are fitting parameters. The parameter A (S m\(^{-1}\) K\(^{1/2}\)) is related to the carrier ion number. The parameter B (K) is related to the activation energy. The product of B (K) and the molar gas constant (8.31 J K\(^{-1}\) mol\(^{-1}\)) has the dimension of activation energy (J mol\(^{-1}\)). \(T_0 \) (K) is the ideal glass transition temperature at which the configurational entropy vanishes.

The temperature dependencies of ionic conductivities for the mixtures 1/3(x) and 2/3(x) are well fitted by the VTF equation. The VTF fitting parameters are summarized in Table S1. For example, the VTF fitting of the ionic conductivities for the mixture 2/3(20) in the Col\(_b\) phase is shown in Figure S20. The VTF plots of the ionic conductivities for the mixtures 1/3(x) and 2/3(x) shown in Figure S21 are depicted as straight lines.

![Figure S20. Arrhenius plots for the ionic conductivity of the mixture 2/3(20). The solid line is the fitting result of the value of ionic conductivity on the VTF equation.](image)
Table S1. VTF fitting parameters of the ionic conductivities for mixtures $1/3(x)$ and $2/3(x)$.

<table>
<thead>
<tr>
<th></th>
<th>A (S m$^{-1}$ K$^{1/2}$)</th>
<th>B (K)</th>
<th>T_0 (K)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3(20)$</td>
<td>0.032</td>
<td>625.9</td>
<td>238.8</td>
<td>0.9983</td>
</tr>
<tr>
<td>$1/3(30)$</td>
<td>0.121</td>
<td>751.3</td>
<td>229.7</td>
<td>0.9991</td>
</tr>
<tr>
<td>$1/3(50)$</td>
<td>13.10</td>
<td>2161.1</td>
<td>124.82</td>
<td>0.9972</td>
</tr>
<tr>
<td>$2/3(20)$</td>
<td>0.049</td>
<td>877.71</td>
<td>242.34</td>
<td>0.9984</td>
</tr>
<tr>
<td>$2/3(30)$</td>
<td>0.173</td>
<td>847.73</td>
<td>239.43</td>
<td>0.9996</td>
</tr>
<tr>
<td>$2/3(50)$</td>
<td>14.35</td>
<td>2480.1</td>
<td>128.02</td>
<td>0.9986</td>
</tr>
</tbody>
</table>

Figure S21. VTF plots of the ionic conductivities for (a) the mixture $1/3(x)$ and (b) the mixture $2/3(x)$ in the liquid-crystalline phases. The mixtures $1/3(20)$, $1/3(30)$, $2/3(20)$, and $2/3(30)$ form the Col$_h$ phases. The mixtures $1/3(50)$ and $2/3(50)$ exhibit the S$_A$ phases.
9. DSC thermograms of 1, 2 and their mixtures with 3

Figure S22. DSC thermograms of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d) mixture 1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at the scanning rate of 10 K/min.
Figure S23. DSC thermograms of (a) compound 2, (b) mixture 2/3(10), (c) mixture 2/3(20), (d) mixture 2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at the scanning rate of 10 K/min.
Figure S24. DSC thermograms of (a) the mixtures $1/3(x)$ and (b) the mixtures $2/3(x)$ on cooling at the scanning rate of 10 K/min.

Figure S25. DSC thermograms of protic salt 3 at the scanning rate of 10 K/min.
10. Wide-angle XRD diffraction patterns of the mixtures

Figure S26. Wide-angle XRD patterns of (a) compound 1, (b) mixture 1/3(10), (c) mixture 1/3(20), (d) mixture 1/3(30), (e) mixture 1/3(40), and (f) mixture 1/3(50) at 70 °C.
Figure S27. Wide-angle XRD patterns of (a) compound 2, (b) mixture 2/3(10), (c) mixture 2/3(20), (d) mixture 2/3(30), (e) mixture 2/3(40), and (f) mixture 2/3(50) at 70 °C.
Table S2. The values of \(d\)-spacing for the mixtures 1/3(x) at 70 °C.

<table>
<thead>
<tr>
<th></th>
<th>(100) [Å]</th>
<th>(200) [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39.41</td>
<td>19.71</td>
</tr>
<tr>
<td>1/3(10)</td>
<td>45.04</td>
<td>21.02</td>
</tr>
<tr>
<td>1/3(20)</td>
<td>46.95</td>
<td>21.96</td>
</tr>
<tr>
<td>1/3(30)</td>
<td>47.97</td>
<td>22.87</td>
</tr>
<tr>
<td>1/3(40)</td>
<td>50.73</td>
<td>23.99</td>
</tr>
<tr>
<td>1/3(50)</td>
<td>49.04</td>
<td>22.75</td>
</tr>
</tbody>
</table>

Table S3. The values of \(d\)-spacing for the mixtures 2/3(x) at 70 °C.

<table>
<thead>
<tr>
<th></th>
<th>(100) [Å]</th>
<th>(200) [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>37.72</td>
<td>18.87</td>
</tr>
<tr>
<td>2/3(10)</td>
<td>44.14</td>
<td>20.63</td>
</tr>
<tr>
<td>2/3(20)</td>
<td>47.97</td>
<td>22.29</td>
</tr>
<tr>
<td>2/3(30)</td>
<td>50.73</td>
<td>23.36</td>
</tr>
<tr>
<td>2/3(40)</td>
<td>55.17</td>
<td>25.66</td>
</tr>
<tr>
<td>2/3(50)</td>
<td>49.04</td>
<td>22.87</td>
</tr>
</tbody>
</table>

Figure S28. Wide-angle XRD pattern of protic salt 3 at 25 °C.