Supplementary Information

Highly Efficient, Coking-Resistant SOFCs for Energy Conversion Using Biogas Fuels

Jianjun Ma†, Cairong Jiang†, Paul A. Connor, Mark Cassidy and John T. S. Irvine*

School of Chemistry, University of St Andrews, The Purdie Building, St Andrews, Fife, Scotland, UK KY16 9ST.
E-mail: jtsi@st-andrews.ac.uk;
Tel: +44 1334 463817; Fax: +44 1334 463808
Fig. S1. Schematic diagram of the cell structure and test rig
Fig. S2. The cell performance of an anode-supported cell in pure hydrogen, 4%H₂O-hydrogen, 20%H₂O-hydrogen and the recirculated biogas at 800 °C; the cell was composed of a YSZ thin film electrolyte, a LSM-YSZ composite cathode and a 1 mm Ni-YSZ infiltrated with different amounts of BCZYYb (a) BCZYYb-0; (b) BCZYYb-0.3 wt%; (c) BCZYYb-0.6 wt%; (d) BCZYYb-1.0 wt%; (e) BCZYYb-1.6 wt%
Fig. S3. Impedance spectra of the cell and the cathode, the cell has a structure of BCZYYb-0.6 wt% -Ni-YSZ/YSZ/GDC/LSCF-GDC, and the cathode impedance spectra was tested with three electrode mode shown in Fig. S1.
Fig. S4. The cell performance of an anode-supported cell in pure hydrogen, 4%H₂O-hydrogen, 20%H₂O-hydrogen and the recirculated biogas at 850 °C. The cell was composed of a BCZYYb-0.6 wt%-1 mm Ni-YSZ, a 3 µm YSZ electrolyte, a GDC buffer layer and a LSCF-GDC.
Fig. S5. The open circuit voltage of an anode-supported cell of a 1 mm Ni-YSZ, a YSZ thin film electrolyte, a GDC buffer layer and a LSCF-GDC, operating in pure hydrogen to 4%H₂O-hydrogen (room temperature 25 °C). The OCV of the cell in hydrogen was 1.13 V and decreased 0.65 V during the switchover to 4%H₂O-hydrogen and then became to be stable in 1.06 V in one hour.
Fig. S6. The open circuit voltage of an anode-supported cell of a 1 mm Ni-YSZ, a YSZ thin film electrolyte, a GDC buffer layer and a LSCF-GDC, operating in 4%H₂O-hydrogen to 20% H₂O-hydrogen, the OCV of the cell was 1.06 V in 4%H₂O-hydrogen and started to decrease in 20% H₂O-hydrogen and stabilised at 0.975 V.
Fig. S7. The open circuit voltage of an anode-supported cell of a 1 mm Ni-YSZ, a YSZ thin film electrolyte, a GDC buffer layer and a LSCF-GDC, operating in 20% H₂O-hydrogen, changes to the recirculated biogas, the OCV of the cell in 20% H₂O-hydrogen was 0.975 V increased to 1.00 V.
Fig. S8. Cell voltage at different currents (0.1 A cm\(^{-2}\), 0.5 A cm\(^{-2}\) and 1 A cm\(^{-2}\)) supplied with 20 ml min\(^{-1}\) biogas, testing temperature was 850 °C, the cell was composed of a 1 mm Ni-YSZ, a YSZ thin film electrolyte, a LSM-YSZ composite cathode.