Supporting Information

Porous graphene/carbon nanowire hybrid with embedded SnO$_2$ nanocrystals for high performance lithium ion storage

Jingjing Tang,a Juan Yang,b Xiangyang Zhou,b Haimin Yaoa and Limin Zhou$^{a, *}$

a Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

b School of Metallurgy and Environment, Central South University, Changsha, China

Table S1 Comparison of the electrochemical performance and synthesis method of SnO$_2$/C.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Synthesis method</th>
<th>Discharge/Charge capacity in the first cycle (mAh g$^{-1}$)</th>
<th>Reversible capacity in n cycle (mAh g$^{-1}$)</th>
<th>Current density (mA g$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO$_2$@CNT</td>
<td>Solution-based method</td>
<td>1851/650</td>
<td>454 (100)</td>
<td>25</td>
<td>[1]</td>
</tr>
<tr>
<td>C/SnO$_2$/C</td>
<td>Electrosprinng, hydrothermal process and heat treatment</td>
<td>1050/961</td>
<td>837 (200)</td>
<td>52.2</td>
<td>[2]</td>
</tr>
<tr>
<td>SnO$_2$/C</td>
<td>Hydrothermal process and heat treatment</td>
<td>-/760</td>
<td>660 (100)</td>
<td>300</td>
<td>[3]</td>
</tr>
<tr>
<td>SnO$_2$/G/C</td>
<td>Two-step hydrothermal process and heat treatment</td>
<td>1310/958</td>
<td>757 (150)</td>
<td>200</td>
<td>[4]</td>
</tr>
<tr>
<td>SnO$_2$/G</td>
<td>Solution-based method</td>
<td>-/786</td>
<td>558 (50)</td>
<td>50</td>
<td>[5]</td>
</tr>
<tr>
<td>SnO$_2$/G</td>
<td>Hydrothermal process</td>
<td>1596/1107</td>
<td>847.5 (50)</td>
<td>78.2</td>
<td>[6]</td>
</tr>
<tr>
<td>SnO$_2$@C</td>
<td>Solution-based method and heat treatment</td>
<td>1772/1212</td>
<td>963 (100)</td>
<td>400</td>
<td>[7]</td>
</tr>
<tr>
<td>SnO$_2$-PG/CNWs</td>
<td>Vacuum assisted impregnation</td>
<td>1699/932</td>
<td>1200 (200)</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

This work
Figure S1. (a) FESEM and (b) FETEM images of GCNWs.

Figure S2. TGA curve of SnO$_2$-PG/CNWs under air atmosphere at a heating rate of 10 °C min$^{-1}$.
Figure S3. XPS survey spectrum (a) of GO/PPy. XPS C1s (b) and N1s (c) spectra of GO/PPy.

Figure S4. Cycling performance of SnO$_2$-PG/CNWs at 2 C for the first 465 cycles and 0.2 C for the following cycles.
Figure S5. The corresponding equivalent circuit of EIS curves.

Figure S6. Relationship between Z' and $w^{-1/2}$.

Figure 7a shows the Nyquist plot in the open circuit state tested before and after cycling. And Figure S5 is the equivalent circuit model constructed to analyse the impedance spectra. Re and Rct are correspond to the ohmic resistance of the electrolyte and the charge transfer resistance, respectively. Ws represents the Warburg impedance, which is associated with the lithium ion diffusion. After cycling, the Re and Rct are calculated to be 6.39 and 40.54 Ω, respectively. The lithium diffusion coefficient can be calculated according to the following equation [8,9]:

$$D_{Li^+} = \frac{R^2T^2}{2A^2n^4F^4C^2} \sigma^2$$

(1)

Where, R is the gas constant, T is the absolute temperature, A is the surface area of the electrode, n is the number of electrons per molecule for the redox couple, F is the Faraday constant, C is the concentration of lithium ion, and σ is Warburg factor, which is determined by the slope of the lines in Figure S6 based on the follow equation:
\[Z' = R_d + R_f + \sigma w^{-1/2} \quad (2) \]

The lithium ion diffusion coefficient was calculated to be \(2.25 \times 10^{-13}\) m/s for SnO\(_2\)-PG/CNWs.

References

metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries, Nano Lett. 13 (2013) 5462-5466.