Supporting information

Ultrathin MnO$_2$ nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors

Yihui Daia, Ling Chena, Vladimir Babayanb, Qilin Chenga, Petr Sahab, Hao Jianga*, Chunzhong Lia*

a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
b Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic

*Corresponding author: Tel.: +86-21-64250949, Fax: +86-21-64250624
E-mail: jianghao@ecust.edu.cn (Prof. H. Jiang) czli@ecust.edu.cn (Prof. C. Z. Li)
Part I: Figures

Fig. S1 SEM images of (a) Fe$_2$O$_3$ nanocubes, (b) Fe$_2$O$_3$@PDA nanocubes, (c) Fe$_2$O$_3$@C nanocubes and (d) N-doped carbon nanoboxes.

Fig. S2 High-magnification SEM image of a representative MnO$_2$/C nanobox.
Fig. S3 (a) N$_2$ adsorption/desorption isotherms and (b) pore size distribution curves of N-doped carbon nanoboxes and MnO$_2$/C nanoboxes.

Fig. S4 The galvanostatic charge/discharge curves of (a) the N-doped carbon and (b) the MnO$_2$/C nanoboxes; (c) CV curves at 20 mV s$^{-1}$ and (d) rate performances of the MnO$_2$/C nanoboxes and the pure ultrathin MnO$_2$ nanosheets with a three-electrode configuration in a 1 M Na$_2$SO$_4$ electrolyte. It is obvious that the as-obtained MnO$_2$/C nanoboxes deliver a higher specific capacitance than that of pure MnO$_2$. Furthermore, the CV curve of the MnO$_2$/C nanoboxes also exhibits an almost vertical line between 0-0.2 V and 0.8-1.0 V compared to the pure MnO$_2$, suggesting a higher rate capability, which is verified by the test results (Fig. S4d).
Fig. S5 Schematic illustration of the as-fabricated ASC device based on MnO$_2$/C nanoboxes as positive electrode and N-doped carbon nanoboxes as negative electrode in 1 M Na$_2$SO$_4$ electrolyte.

Part II: Calculations

The specific capacitance was calculated from the CV curve according to the following equation:

\[
C = \frac{Q}{(\Delta V m)}
\]

where \(C \) (F g$^{-1}$) is the specific capacitance, \(Q \) (C) is the average charge during charge/discharge process, \(m \) (g) is the mass of active material, and \(\Delta V \) (V) is the potential window of the CV curve. The discharge specific capacitance could also be calculated from the discharge curves by the following equation:

\[
C = \frac{I \Delta t}{(m \Delta V)}
\]

where \(I \) (A), \(\Delta t \) (s), \(m \) (g) and \(\Delta V \) (V) are the discharge current, discharge time, mass of the active materials (or mass of the total electrode materials), and the potential window, respectively.

The energy density \(E \) (W h kg$^{-1}$) and power density \(P \) (W kg$^{-1}$) were calculated by the following equations:

\[
E = C(\Delta V)^2/2
\]

\[
P = E/\Delta t
\]

where \(C \) (F g$^{-1}$) is the specific capacitance of the active materials, and \(\Delta V \) (V) is the potential window, \(\Delta t \) (s) is the discharge time consumed in the potential range of \(\Delta V \).