Supporting Information

Core-shell Amorphous Cobalt Phosphide/Cadmium Sulfide Semiconductor Nanorods for Exceptional Photocatalytic Hydrogen Production under Visible Light

Zijun Sun, a Bihu Lv, b Jingshi Li, a Min Xiao, b Xiaoyong Wang,*b and Pingwu Du*a

a CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, and the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
b National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, Jiangsu Province, 210093, P. R. China

*To whom correspondence should be addressed
E-mail: dupingwu@ustc.edu.cn; wxiaoyong@nju.edu.cn
Tel/Fax: 86-551-63606207
Materials and Methods

Materials. All the chemicals, including cadmium chloride hemipentahydrate (CdCl₂·2.5H₂O), thiourea (NH₂CSNH₂), ethylenediamine (C₂H₄(NH₂)₂), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), sodium sulfide nonahydrate (Na₂S·9H₂O), and anhydrous sodium sulfate (Na₂SO₄), were obtained from Aldrich and used without further purification.

Preparation of the CdS NRs: CdS NRs were fabricated by a modified solvothermal method.1 20.25 mmol CdCl₂·2.5H₂O and 60.75 mmol NH₂CSNH₂ were dispersed in 60 mL ethylenediamine and then transferred to a 100 mL Teflon-lined, stainless-steel autoclave, which was later maintained at 160 °C for 48 h and then allowed to cool down to room temperature. The yellow precipitate was collected and washed with ethanol and distilled water three times each to remove the residue of any organic solvent.

Preparation of core-shell CoPₓ/CdS NRs photocatalyst and pure CoPₓ: To synthesize core-shell CoPₓ/CdS NRs, 200 mg CdS NRs, a specified amount of Co(NO₃)₂·6H₂O (4 mg, 16 mg, 32 mg, 64 mg, and 108 mg for five samples SC1 to SC5 respectively), and five-fold yellow phosphorus were dispersed in ethylenediamine under stirring and ultrasonication. Subsequently, the mixture was transferred to a 50 mL Teflon-lined stainless autoclave and was solvothermally treated at 140 °C for 12 h. After the autoclave was cooled to room temperature, the precipitates were collected and washed with benzene, ethanol, and distilled water three times each. The final products were dried in vacuum at 60 °C overnight. For comparison, pure CoPₓ was also synthesized by a similar solvothermal method in the absence of CdS NRs.
Preparation of Pt/CdS NRs: 0.5 wt% Pt was loaded on CdS in-situ by photoreduction method using H_2PtCl_6.

Photocatalytic hydrogen evolution. The photocatalytic hydrogen evolution experiments were carried out in a 50 mL flask at ambient temperature using a 300 W Xe lamp equipped with a UV cut-off filter ($\lambda > 420 \text{ nm}$). 1.0 mg of the photocatalyst was dispersed in 20 mL of aqueous solution containing Na_2S and Na_2SO_3 as the electron donor, and then the suspension was stirred and purged with nitrogen for 20 min to remove air. To compare the photocatalytic activity of different CoP$_x$/CdS NRs samples with different amount of CoP$_x$, the hydrogen production reactions were carried out in a 20 mL aqueous solution containing 1 mg photocatalyst, 15 mmol Na_2S (0.75 M), and 21 mmol Na_2SO_3 (1.05 M). For long-term photocatalysis, a 250 mL flask was used instead, and 1 mg SC2 photocatalyst was dispersed in a 50 mL aqueous solution containing 75 mmol Na_2S (1.5 M) and 105 mmol Na_2SO_3 (2.1 M) as sacrificial reagents. Hydrogen gas was measured by gas chromatography (SP-6890, nitrogen as a carrier gas) using a thermal conductivity detector (TCD). For each evaluation of hydrogen generation, 100 μL of the headspace was injected into the GC and was quantified by a calibration plot to the internal CH$_4$ standard.$^{[2-5]}$

Apparent quantum yields ($A.Q.Y., \phi$) defined by the following equation were measured using a 450 nm (± 5 nm) band-pass filter and an irradiatometer. The reaction was carried out in a 50 mL flask and 1 mg SC2 photocatalyst was dispersed in a 20 mL aqueous solution containing 25 mmol Na_2S (1.25 M) and 35 mmol Na_2SO_3 (1.75 M) as sacrificial reagents.
\[
A.Q.Y.(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100% \\
= \frac{\text{number of evolved } H_2 \text{ molecules } \times 2}{\text{number of incident photons}} \times 100%
\]

The turnover numbers (TONs) and turnover frequency (TOF) was calculated by using the follow equation:

\[
TON = \frac{\text{moles of } H_2 \text{ evolved}}{\text{moles of cobalt on photocatalyst}} \\
TOF = \frac{\text{moles of } H_2 \text{ evolved per hour}}{\text{moles of cobalt on photocatalyst}}
\]

Organic electron acceptors (methyl viologen dication (MV\(^{2+}\)) and N,N\(^\prime\)-(1,3-propylene)-5,5\(^\prime\)-dimethylbipyridine (DQ\(^{2+}\))) were used to detect the reducing power. A 3 mL aqueous solution containing sample SC2 (8.3 μg·mL\(^{-1}\)), 0.625 M Na\(_2\)S and 0.875 M Na\(_2\)SO\(_3\) and 3\times10\(^{-5}\) M MV\(^{2+}\) (or DQ\(^{2+}\)) were irradiated under visible light (λ > 420 nm). And UV-vis absorption spectra was used to detect the change of Organic electron acceptors.

Characterization. Powder X-ray diffraction (XRD) results were measured by X-ray diffraction (XRD, D/max-TTR III) using graphite monochromatized Cu Ka radiation of 1.54178 Å, operating at 40 kV and 200 mA. The scanning rate was 5° min\(^{-1}\) in 2θ. The scanning electron microscopy (SEM) measurement was conducted using a JSM-6700F. The morphologies and energy-dispersive X-ray analysis (EDX) of the samples were determined by a high-resolution transmission electron microscope (HR-TEM, JEM-2010) equipped with an electron diffraction (ED) attachment with an acceleration voltage of 200 kV and a Rontec EDX system. X-ray photoelectron spectroscopy (XPS)
data and the valence states of metal elements were obtained with an ESCALAB 250 instrument. UV-Vis diffuse reflection spectroscopy (DRS) was performed on a SOLID 3700 UV-Vis spectrometer. The photoluminescence (PL) spectra for solid samples were investigated through an Acton Sp2500 (Princeton Instruments) with a liquid nitrogen cooled CCD. The time-resolved photoluminescence (TRPL) spectral analysis was performed on a PicoHarp 300 (PicoQuant). Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) results were measured by an Optima 7300 DV.

References.

Table S1. Cobalt content in CoPₓ/CdS photocatalyst samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Co (wt%)/ICP-AES data</th>
<th>P (wt%)/ICP-AES data</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC1</td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>SC2</td>
<td>0.32</td>
<td>0.92</td>
</tr>
<tr>
<td>SC3</td>
<td>0.98</td>
<td>2.62</td>
</tr>
<tr>
<td>SC4</td>
<td>2.15</td>
<td>5.10</td>
</tr>
<tr>
<td>SC5</td>
<td>3.50</td>
<td>13.19</td>
</tr>
</tbody>
</table>
Figure S1. Comparison of photocatalytic hydrogen production rate of SC2 sample with 0.5 wt% Pt/CdS NRs under visible light ($\lambda > 420$ nm). The system contains 1.0 mg photocatalyst, 0.75 M Na$_2$S, and 1.05 M Na$_2$SO$_3$ in 20 mL aqueous solution.
Figure S2. High-resolution XPS spectra of (a) Cd 3d, (b) S 2p, (c) Co 2p, and (d) P 2p.
Figure S3. High-resolution XPS spectra of pure CoPₓ of (a) Co 2p and (b) P 2p.
Figure S4. SEM images of (a) CdS NRs and (b) CoP_x.
Figure S5. Cycling runs for photocatalytic hydrogen evolution in the presence of 1.0 mg SC2 samples in a 50 mL aqueous solution containing 1.25 M Na₂S and 1.75 M Na₂SO₃ at room temperature. After every 3 hours, the produced H₂ was evacuated.
Figure S6. SEM of the SC2 sample after visible light irradiation.
Figure S7. High-resolution XPS data of (a) Co 2p and (b) P 2p for sample SC2 before and after photocatalytic hydrogen production under visible light.