Ultrathin mesoporous Co$_3$O$_4$ nanosheets with excellent photo-/thermo-catalytic activity

Yali Zheng, Wenzhong Wang*, Dong Jiang, Ling Zhang, Xiaoman Li, Zhong Wang

State Key Laboratory of High Performance Ceramics and Superfine Microstructures,
Shanghai Institute of Ceramics, Chinese Academy of Sciences
1295 Dingxi Road, Shanghai 200050, P. R. China

*Corresponding author (W. Wang) Tel.: +86-21-5241-5295, Fax: +86-21-5241-3122,
E-mail: wzwang@mail.sic.ac.cn
Experimental

Co$_3$O$_4$-O preparation

Cobalt nitrate hexahydrate (Co(NO$_3$)$_2$·6H$_2$O, A. R.) and oxalic acid dihydrate (C$_2$H$_2$O$_4$·2H$_2$O, A. R.) were purchased from Shanghai Chemical Company. All of the materials were used without further purification.

Co$_3$O$_4$-O nanoparticles were synthesized through a template-free strategy of decomposing self-made bimetal oxalate as previously reported. In a typical process, 0.01 mol Co(NO$_3$)$_2$·6H$_2$O was dissolved in 40 mL deionized water under magnetic stirring. 0.01 mol H$_2$C$_2$O$_4$·2H$_2$O was dissolved in 15 mL deionized water at 60 °C. The latter solution was added dropwise to the former under vigorous magnetic stirring, resulting in a precipitation forming. After stirring for another 1 h in an ice bath, the solid residue was separated by filtration, washed copiously with deionized water, and dried in air at 60 °C followed by calcinations in air at 250 °C for 2 h (at 1 °C min$^{-1}$ heating rate). The sample was denoted as Co$_3$O$_4$-O.

Electrophoresis of SS-Co$_3$O$_4$ (EP)

The electrophoretic deposition was performed on a DC power supply (HY3003) with stainless steel mesh (SS, approximately 2 cm × 3 cm) as both the cathode and anode. 40 mg Co$_3$O$_4$-O and 10mg iodine were added to 50 mL acetone, the whole solution were ultrasonic for 3 minutes. The voltage was set to 10 V and the whole electrophoretic deposition process lasted for 4 minutes, the as-obtained sample was denoted as SS-Co$_3$O$_4$ (EP) and washed with deionized water, then dried in air at 60 °C.

Electrochemical analysis

The photocurrent spectra were performed in a three-electrode cell (quartz window) with 0.1 M Na$_2$SO$_4$ as electrolyte at a potential of 0.5 V. A Pt ring was used
as the counter electrode, a saturated calomel electrode (SCE) as the reference electrode and the catalyst as the working electrode. A CHI 660C electrochemical workstation (Shanghai Chenhua, China) was used for the photocurrent measurements. As for light sources, a 500W Xe lamp (CHF-XM500) was used.

TG/DTA measurement
Thermogravimetric/differential thermal analyzer (TG/DTA) measurements were conducted using a NETZSCH STA 449C apparatus with an air flow of 20 mL min\(^{-1}\) and a heating rate of 10 K min\(^{-1}\).

Raman spectra were recorded on a microscopic confocal Raman spectrometer (Renishaw 1000NR) with an excitation of 514 nm laser light.

Table S1 The amount of Co$_3$O$_4$ grown on each SS substrate

<table>
<thead>
<tr>
<th>Sample</th>
<th>Co$_3$O$_4$ nanosheets scratched down from the SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>6.4</td>
</tr>
</tbody>
</table>
Fig. S1 XRD patterns of Co(OH)$_2$ precursor and SS-Co$_3$O$_4$
As seen from Fig. S2A, the Co(OH)\(_2\) obtained by electrodeposition undergoes a two step weight loss due to dehydration and deposition, rather than a single step weight loss for the \(\beta\)-Co(OH)\(_2\).\(^2\) The weight loss below 152 °C is attributed to the removal of the absorbed water and the evaporation of the intercalated water molecules. And the weight loss above 152 °C is associated with the loss of water produced by the decomposition and dehydroxylation of Co(OH)\(_2\).\(^3\) After thermally oxidative transformation into Co\(_3\)O\(_4\), the net weight loss observed is ca. 19.52%, much larger than that of 13.6% of the \(\beta\)-Co(OH)\(_2\). These data further indicates the formed
precursor is α-Co(OH)$_2$ phase rather than β-Co(OH)$_2$ and show the crystallization of Co$_3$O$_4$.4

The sample scratched down from the SS clearly displayed five bands located at approximately 476 (E$_g$), 191 (F$_{2g}$), 513 (F$_{2g}$), 607 (F$_{2g}$), and 680 (A$_{1g}$) cm$^{-1}$, consonant with other references about Co$_3$O$_4$.5,6

Fig. S3 UV-Vis-IR spectra of SS, SS-Co$_2$O$_4$ and Co$_2$O$_4$-O
Fig. S4 (A) XRD patterns of Co\textsubscript{3}O\textsubscript{4}-O. (B) TG and DTA curves of the Co-oxalate precursor. (C)(D) Transmission electron microscopy (TEM) images of Co\textsubscript{3}O\textsubscript{4}-O

Mainly, one endothermic peak and one exothermic peak can be found for the Co-oxalate precursor. The endothermic and exothermic peaks represent the loss of structural water (weight loss of 18.83\%) and decomposition of the C\textsubscript{2}O\textsubscript{4}2- groups (weight loss of 36.85\%), respectively.1
The Brunauer–Emmett–Teller (BET) specific surface area was measured to be 128.3 m²g⁻¹.
Fig. S6 Temporal change of the temperature on the Co$_3$O$_4$-O and SS under the irradiation of the Xe lamp.
Fig. S7 Blank experiments for C₃H₈ and C₃H₆ oxidation
Fig. S8 Consecutive cyclic tests for C$_3$H$_8$ oxidation over SS-Co$_3$O$_4$ under PTC conditions
Fig. S9 (A) Current–time (i–t) curves of SS, SS-Co$_3$O$_4$(EP), and SS-Co$_3$O$_4$ electrodes recorded at 0.5V vs. SCE. (B) Current–time (i–t) curves of SS-Co$_3$O$_4$ under different temperature.
Fig. S10 (A) FTO-Co$_3$O$_4$ (6.1 mg) (B) SS-Co$_3$O$_4$ (7.0 mg) (C) Ni-Co$_3$O$_4$ (6.8 mg) (D) (E)C$_3$H$_8$ and C$_3$H$_6$ oxidation over SS-Co$_3$O$_4$, Ni-Co$_3$O$_4$, FTO-Co$_3$O$_4$, and Co$_3$O$_4$ nanosheets scratched down from the SS substrate (50 mg) under simulated sunlight (Xe lamp).