Supporting Information for

Poly(Ionic Liquid)s Hydrogels Exhibiting Superior Mechanical and Electrochemical Properties as Flexible Electrolytes

Tao Zhoua, Xinpei Gaoa, Bin Dongb, Na Suna, Liqiang Zheng**

aKey laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China
bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China

Figure S1 SEM picture of poly(ZIW/NaSS)s xerogels
Figure S2 Pictures of poly(ZIW/AMPS) hydrogels under deformations

Figure S3 Potentiostatic curves obtained at U= 0.3 V for poly(ZIW/AMPS) hydrogels.
Figure S4 Schematic diagram of flexible devices for electrochemical measurements based on poly(ZIW/AMPS) hydrogel electrolytes.

Figure S5 Circuit based on poly(ZIW/AMPS)s hydrogel electrolytes: (a, b) optical images of circuit based on poly(ZIW/AMPS)s hydrogel electrolytes at open and closed states; (c, d, e, f) the circuit functions well under compressed, bended, folded and twisted states.