Supporting Information

\textbf{SiO}_2/\textbf{TiO}_2 Based Hollow Nanostructures as Scaffold Layers and Al-doping in Electron Transfer Layer for Efficient Perovskite Solar Cells}

\textit{Juyoung Yun, Jaehoon Ryu, Jungsup Lee, Haejun Yu and Jyongsik Jang*}

\[\text{[*]} \quad \text{Prof. Jyongsik Jang} \\
\text{School of Chemical and Biological Engineering,} \\
\text{Seoul National University, 599 Gwanangno, Gwanakgu, Seoul 151-742, Korea} \\
\text{E-mail: jsjang@plaza.snu.ac.kr} \\
\text{Tel.: +82-2-880-7069} \\
\text{Fax: +82-2-880-1604} \]
Fig. S1. a) Schematic illustration of the synthesis of hollow nanoparticles. HR-TEM images of b) STCSNP, c) STHNP, d) THNP.
Fig. S2. a) STEM images of STHNP and elemental dot mapping of b) Ti, c) Si, d) O. e) STEM-EDS line mapping of STHNP.
Fig. S3. XRD analysis of a) STHNPs and THNPs, b) annealed perovskite films.
Fig. S4. Current density-voltage curve of perovskite solar cells based on silica, THNPs, and STHNPs. Photovoltaic parameters are summarized in the inset table.
Fig. S5. Current density-voltage curve of perovskite solar cells based on Al-doping concentration. Photovoltaic parameters are summarized in the inset table.
Fig. S6. Transmittance spectra of the TiO$_2$ and Al-TiO$_2$ compact layer.

The transmittance change of compact layer by Al-doping could effect on the current density of PSCs. Fig. S6 shows the transmittance spectra of TiO$_2$ and Al-TiO$_2$ compact layer. There was no change in the transmittance of compact layer after Al-doing (0.2-0.4 mol%) in TiO$_2$.
Fig. S7. Hysteresis analysis of PSC based on STHNPs as scaffold layer and Al-TiO$_2$ compact layer. Photovoltaic parameters are summarized in the inset table.

Fig. S7 exhibits the J-V curve for PSC based on STHNPs as scaffold layer and Al-TiO$_2$ compact layer in forward and reverse scan mode with 0.35 V/s scan rate. The inset table summarizes the photovoltaic parameters. The forward scan showed 18.3 mA/cm2 of J_{sc}, 0.96 V of V_{oc}, 0.62 of FF, and 10.9 % of PCE. On the other hand, the reverse scan exhibited 18.3 mA/cm2 of J_{sc}, 1.05 V of V_{oc}, 0.71 of FF, and 13.6 % of PCE, respectively.
Table S1. Conductivity of TiO$_2$ and Al-TiO$_2$ compact layer.

<table>
<thead>
<tr>
<th></th>
<th>TiO$_2$</th>
<th>Al-TiO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (S cm$^{-1}$)</td>
<td>1.58×10^{-4}</td>
<td>2.74×10^{-4}</td>
</tr>
</tbody>
</table>

The conductivity of TiO$_2$ and Al-TiO$_2$ compact film was measured by 2-point measurement using two gold electrodes to confirm the enhancement of electronic properties.1 The channel length and the width were 0.2 mm and 1 mm, respectively. Table S1 certifies that the Al-doping in TiO$_2$ increased the conductivity. This increase could improve the carrier transport.

Reference