Supporting Information

Wei-jie Li, a Shu-lei Chou, a,* Jia-zhao Wang, a Hua-kun Liu a

a Institute for Superconducting and Electronic Materials, University of Wollongong. 2522, Wollongong, Australia.
*E-mail: shulei@uow.edu.au

Figure S1. SEM images of (a) graphite and (b) red phosphorus.

Figure S2. XRD pattern of the P/GnPs -300.

Figure S3. (a) SEM image with corresponding EDS mapping, and (b) TEM image of P/GnPs -300.

Figure S4. XPS spectra of (a) C1s and (b) P 2p of P/GnPs-300.

Figure S5. Raman spectra of P/GnPs composites milled at different speeds.

Figure S6. FTIR spectra of P/GnPs composites milled at different speeds.

Figure S7. Electrochemical impedance spectra of P/GnPs – 500 (b) compared with P/GnPs -300 (c) in the charged state at 0.6 V in the 5th, 20th, and 100th cycles. (a) Equivalent circuit used to interpret the results.

Figure S8. Cycling performance of the P/GnPs -500 composite electrode at the high current densities of 500 mA g⁻¹ and 1 A g⁻¹.

Figure S9. (a) Charge-discharge curves for selected cycles, and (b) cycling performance of the graphite milled for 40 h.

Figure S10. Photographs of the electrodes after 200 cycles: (a) P/GnPs-300; (b) P/GnPs -500.

Table S1. R_{ct} (Ω) and R_x (Ω) of the P/GnPs electrodes after different cycles.
Figure S1. SEM images of (a) graphite and (b) red phosphorus.

Figure S2. XRD pattern of the P/GnPs -300.
Figure S3. (a) SEM image with corresponding EDS mapping, and (b) TEM image of P/GnPs -300.
Figure S4. XPS spectra of (a) C1s and (b) P 2p of P/GnPs-300.
Figure S5. Raman spectra of P/GnPs composites milled at different speeds.

Figure S6. FTIR spectra of P/GnPs composites milled at different speeds.
Figure S7. Electrochemical impedance spectra of P/GnPs – 500 (b) compared with P/GnPs - 300 (c) in the charged state at 0.6 V in the 5th, 20th, and 100th cycles. (a) Equivalent circuit used to interpret the results.
Table S1. R_{ct} (Ω) and R_x (Ω) of the P/GnPs electrodes after different cycles.

<table>
<thead>
<tr>
<th></th>
<th>5th cycle</th>
<th>20th cycle</th>
<th>100th cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_x</td>
<td>R_{ct}</td>
<td>R_x</td>
</tr>
<tr>
<td>P/GnPs -500</td>
<td>49</td>
<td>95</td>
<td>70</td>
</tr>
<tr>
<td>P/GnPs -300</td>
<td>32</td>
<td>147</td>
<td>64</td>
</tr>
</tbody>
</table>

Figure S8. Cycling performance of the P/GnPs -500 composite electrode at the high current densities of 500 mA g⁻¹ and 1 A g⁻¹ (the current density is 100 mA g⁻¹ in the first 5 cycles).
Figure S9. (a) Charge-discharge curves for selected cycles, and (b) cycling performance of the graphite milled for 40 h.
Figure S10. Photographs of the electrodes after 200 cycles: (a) P/GnPs-300; (b) P/GnPs -500.